File size: 3,517 Bytes
9c31a35
3d7c303
9bfcbfa
dca02e2
3d7c303
 
 
7d4300a
9c31a35
51a6b05
 
 
9c31a35
7d4300a
9c31a35
51a6b05
9c31a35
 
 
7d4300a
9c31a35
7d4300a
9bfcbfa
b07eb2d
7d4300a
 
dca02e2
7d4300a
 
 
 
9bfcbfa
7d4300a
 
 
9bfcbfa
dca02e2
 
 
5e0dd71
7d4300a
 
 
5e0dd71
dca02e2
 
 
9bfcbfa
dca02e2
 
9bfcbfa
7d4300a
 
 
9bfcbfa
962c25c
 
 
932dcf5
962c25c
 
 
 
 
 
 
 
 
 
 
 
 
d4d95e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dca02e2
 
 
5e0dd71
d4d95e5
 
 
 
5e0dd71
dca02e2
 
 
d398bf9
 
dca02e2
d398bf9
d4d95e5
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import unittest
import numpy as np
import pandas as pd
from pysr import sympy2torch, PySRRegressor
import torch
import sympy


class TestTorch(unittest.TestCase):
    def setUp(self):
        np.random.seed(0)

    def test_sympy2torch(self):
        x, y, z = sympy.symbols("x y z")
        cosx = 1.0 * sympy.cos(x) + y
        X = torch.tensor(np.random.randn(1000, 3))
        true = 1.0 * torch.cos(X[:, 0]) + X[:, 1]
        torch_module = sympy2torch(cosx, [x, y, z])
        self.assertTrue(
            np.all(np.isclose(torch_module(X).detach().numpy(), true.detach().numpy()))
        )

    def test_pipeline(self):
        X = np.random.randn(100, 10)
        equations = pd.DataFrame(
            {
                "Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
                "MSE": [1.0, 0.1, 1e-5],
                "Complexity": [1, 2, 3],
            }
        )

        equations["Complexity MSE Equation".split(" ")].to_csv(
            "equation_file.csv.bkup", sep="|"
        )

        model = PySRRegressor(
            model_selection="accuracy",
            equation_file="equation_file.csv",
            variable_names="x1 x2 x3".split(" "),
            extra_sympy_mappings={},
            output_torch_format=True,
        )
        model.selection = [1, 2, 3]
        model.n_features = 2  # TODO: Why is this 2 and not 3?
        model.using_pandas = False
        model.refresh()

        tformat = model.pytorch()
        self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
        np.testing.assert_almost_equal(
            tformat(torch.tensor(X)).detach().numpy(),
            np.square(np.cos(X[:, 1])),  # Selection 1st feature
            decimal=4,
        )

    def test_mod_mapping(self):
        x, y, z = sympy.symbols("x y z")
        expression = x**2 + sympy.atanh(sympy.Mod(y + 1, 2) - 1) * 3.2 * z

        module = sympy2torch(expression, [x, y, z])

        X = torch.rand(100, 3).float() * 10

        true_out = (
            X[:, 0] ** 2 + torch.atanh(torch.fmod(X[:, 1] + 1, 2) - 1) * 3.2 * X[:, 2]
        )
        torch_out = module(X)

        np.testing.assert_array_almost_equal(
            true_out.detach(), torch_out.detach(), decimal=4
        )

    def test_custom_operator(self):
        X = np.random.randn(100, 3)

        equations = pd.DataFrame(
            {
                "Equation": ["1.0", "mycustomoperator(x0)"],
                "MSE": [1.0, 0.1],
                "Complexity": [1, 2],
            }
        )

        equations["Complexity MSE Equation".split(" ")].to_csv(
            "equation_file_custom_operator.csv.bkup", sep="|"
        )

        model = PySRRegressor(
            model_selection="accuracy",
            equation_file="equation_file_custom_operator.csv",
            variable_names="x1 x2 x3".split(" "),
            extra_sympy_mappings={"mycustomoperator": sympy.sin},
            extra_torch_mappings={"mycustomoperator": torch.sin},
            output_torch_format=True,
        )
        model.selection = [0, 1, 2]
        model.n_features = 3
        model.using_pandas = False
        model.refresh()
        # Will automatically use the set global state from get_hof.
        tformat = model.pytorch()
        self.assertEqual(str(tformat), "_SingleSymPyModule(expression=sin(x0))")

        np.testing.assert_almost_equal(
            tformat(torch.tensor(X)).detach().numpy(),
            np.sin(X[:, 0]),  # Selection 1st feature
            decimal=4,
        )