Spaces:
Running
Running
File size: 14,582 Bytes
63ae9cd 222fbf0 13219e6 460af25 fea9443 9d6017e fea9443 13219e6 fea9443 edbcfa6 71ed397 c6a43c4 9d6017e 73042d9 fea9443 758e952 63ae9cd 73042d9 fea9443 73042d9 deeb73e bb76c1f fea9443 bb76c1f 9d6017e 8a2bd53 f072863 bb76c1f 73042d9 bb76c1f 73042d9 f072863 73042d9 fea9443 8a2bd53 fea9443 758e952 fea9443 758e952 fea9443 758e952 fea9443 758e952 fea9443 758e952 9d6017e 758e952 fea9443 758e952 fea9443 bb76c1f 8a2bd53 bb76c1f 13219e6 bb76c1f d39a013 8a2bd53 deeb73e 13219e6 bb76c1f c6a43c4 88a78a4 dd65136 f751163 9d6017e f751163 dd65136 e487754 dd65136 fea9443 dd65136 9d6017e 0dc382d 9d6017e d3c4f72 9d6017e 0dc382d 9d6017e 8a2bd53 9d6017e 8a2bd53 9d6017e 8a2bd53 9d6017e 8a2bd53 9d6017e 8a2bd53 dd65136 9d6017e 8a2bd53 dd65136 f072863 dd65136 46fdaa6 dd65136 46fdaa6 dd65136 46fdaa6 fea9443 c353ada bb76c1f 4eac491 c353ada 46fdaa6 dd65136 bb76c1f 46fdaa6 dd65136 bb76c1f dd65136 fea9443 dd65136 9d6017e 8a2bd53 dd65136 46fdaa6 fea9443 46fdaa6 dd65136 fea9443 dd65136 edbcfa6 fea9443 758e952 fea9443 5a5a76f edbcfa6 9d6017e 4eac491 9d6017e 4eac491 9d6017e 4eac491 9d6017e 4eac491 9d6017e 4eac491 9d6017e 4eac491 9d6017e 4eac491 9d6017e 4eac491 9d6017e 4eac491 9d6017e 758e952 9d6017e 758e952 9d6017e 758e952 9d6017e f751163 9d6017e f751163 9d6017e f751163 758e952 f751163 758e952 f072863 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
import multiprocessing as mp
import os
import time
import gradio as gr
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
plt.ioff()
import tempfile
from pathlib import Path
empty_df = pd.DataFrame(
{
"equation": [],
"loss": [],
"complexity": [],
}
)
test_equations = ["sin(2*x)/x + 0.1*x"]
def generate_data(s: str, num_points: int, noise_level: float, data_seed: int):
rstate = np.random.RandomState(data_seed)
x = rstate.uniform(-10, 10, num_points)
for k, v in {
"sin": "np.sin",
"cos": "np.cos",
"exp": "np.exp",
"log": "np.log",
"tan": "np.tan",
"^": "**",
}.items():
s = s.replace(k, v)
y = eval(s)
noise = rstate.normal(0, noise_level, y.shape)
y_noisy = y + noise
return pd.DataFrame({"x": x}), y_noisy
def _greet_dispatch(
file_input,
force_run,
test_equation,
num_points,
noise_level,
data_seed,
niterations,
maxsize,
binary_operators,
unary_operators,
plot_update_delay,
parsimony,
populations,
population_size,
ncycles_per_iteration,
elementwise_loss,
adaptive_parsimony_scaling,
optimizer_algorithm,
optimizer_iterations,
batching,
batch_size,
):
"""Load data, then spawn a process to run the greet function."""
if file_input is not None:
# Look at some statistics of the file:
df = pd.read_csv(file_input)
if len(df) == 0:
return (
empty_df,
"The file is empty!",
)
if len(df.columns) == 1:
return (
empty_df,
"The file has only one column!",
)
if len(df) > 10_000 and not force_run:
return (
empty_df,
"You have uploaded a file with more than 10,000 rows. "
"This will take very long to run. "
"Please upload a subsample of the data, "
"or check the box 'Ignore Warnings'.",
)
col_to_fit = df.columns[-1]
y = np.array(df[col_to_fit])
X = df.drop([col_to_fit], axis=1)
else:
X, y = generate_data(test_equation, num_points, noise_level, data_seed)
with tempfile.TemporaryDirectory() as tmpdirname:
base = Path(tmpdirname)
equation_file = base / "hall_of_fame.csv"
equation_file_bkup = base / "hall_of_fame.csv.bkup"
process = mp.Process(
target=greet,
kwargs=dict(
X=X,
y=y,
niterations=niterations,
maxsize=maxsize,
binary_operators=binary_operators,
unary_operators=unary_operators,
equation_file=equation_file,
parsimony=parsimony,
populations=populations,
population_size=population_size,
ncycles_per_iteration=ncycles_per_iteration,
elementwise_loss=elementwise_loss,
adaptive_parsimony_scaling=adaptive_parsimony_scaling,
optimizer_algorithm=optimizer_algorithm,
optimizer_iterations=optimizer_iterations,
batching=batching,
batch_size=batch_size,
),
)
process.start()
last_yield_time = None
while process.is_alive():
if equation_file_bkup.exists():
try:
# First, copy the file to a the copy file
equation_file_copy = base / "hall_of_fame_copy.csv"
os.system(f"cp {equation_file_bkup} {equation_file_copy}")
equations = pd.read_csv(equation_file_copy)
# Ensure it is pareto dominated, with more complex expressions
# having higher loss. Otherwise remove those rows.
# TODO: Not sure why this occurs; could be the result of a late copy?
equations.sort_values("Complexity", ascending=True, inplace=True)
equations.reset_index(inplace=True)
bad_idx = []
min_loss = None
for i in equations.index:
if min_loss is None or equations.loc[i, "Loss"] < min_loss:
min_loss = float(equations.loc[i, "Loss"])
else:
bad_idx.append(i)
equations.drop(index=bad_idx, inplace=True)
while (
last_yield_time is not None
and time.time() - last_yield_time < plot_update_delay
):
time.sleep(0.1)
yield equations[["Complexity", "Loss", "Equation"]]
last_yield_time = time.time()
except pd.errors.EmptyDataError:
pass
process.join()
def greet(
*,
X,
y,
**pysr_kwargs,
):
import pysr
model = pysr.PySRRegressor(
progress=False,
timeout_in_seconds=1000,
**pysr_kwargs,
)
model.fit(X, y)
return 0
def _data_layout():
with gr.Tab("Example Data"):
# Plot of the example data:
with gr.Row():
with gr.Column():
example_plot = gr.Plot()
with gr.Column():
test_equation = gr.Radio(
test_equations, value=test_equations[0], label="Test Equation"
)
num_points = gr.Slider(
minimum=10,
maximum=1000,
value=200,
label="Number of Data Points",
step=1,
)
noise_level = gr.Slider(
minimum=0, maximum=1, value=0.05, label="Noise Level"
)
data_seed = gr.Number(value=0, label="Random Seed")
with gr.Tab("Upload Data"):
file_input = gr.File(label="Upload a CSV File")
gr.Markdown(
"The rightmost column of your CSV file will be used as the target variable."
)
return dict(
file_input=file_input,
test_equation=test_equation,
num_points=num_points,
noise_level=noise_level,
data_seed=data_seed,
example_plot=example_plot,
)
def _settings_layout():
with gr.Tab("Basic Settings"):
binary_operators = gr.CheckboxGroup(
choices=["+", "-", "*", "/", "^", "max", "min", "mod", "cond"],
label="Binary Operators",
value=["+", "-", "*", "/"],
)
unary_operators = gr.CheckboxGroup(
choices=[
"sin",
"cos",
"tan",
"exp",
"log",
"square",
"cube",
"sqrt",
"abs",
"erf",
"relu",
"round",
"sign",
],
label="Unary Operators",
value=["sin"],
)
niterations = gr.Slider(
minimum=1,
maximum=1000,
value=40,
label="Number of Iterations",
step=1,
)
maxsize = gr.Slider(
minimum=7,
maximum=100,
value=20,
label="Maximum Complexity",
step=1,
)
parsimony = gr.Number(
value=0.0032,
label="Parsimony Coefficient",
)
with gr.Tab("Advanced Settings"):
populations = gr.Slider(
minimum=2,
maximum=100,
value=15,
label="Number of Populations",
step=1,
)
population_size = gr.Slider(
minimum=2,
maximum=1000,
value=33,
label="Population Size",
step=1,
)
ncycles_per_iteration = gr.Number(
value=550,
label="Cycles per Iteration",
)
elementwise_loss = gr.Radio(
["L2DistLoss()", "L1DistLoss()", "LogitDistLoss()", "HuberLoss()"],
value="L2DistLoss()",
label="Loss Function",
)
adaptive_parsimony_scaling = gr.Number(
value=20.0,
label="Adaptive Parsimony Scaling",
)
optimizer_algorithm = gr.Radio(
["BFGS", "NelderMead"],
value="BFGS",
label="Optimizer Algorithm",
)
optimizer_iterations = gr.Slider(
minimum=1,
maximum=100,
value=8,
label="Optimizer Iterations",
step=1,
)
# Bool:
batching = gr.Checkbox(
value=False,
label="Batching",
)
batch_size = gr.Slider(
minimum=2,
maximum=1000,
value=50,
label="Batch Size",
step=1,
)
with gr.Tab("Gradio Settings"):
plot_update_delay = gr.Slider(
minimum=1,
maximum=100,
value=3,
label="Plot Update Delay",
)
force_run = gr.Checkbox(
value=False,
label="Ignore Warnings",
)
return dict(
binary_operators=binary_operators,
unary_operators=unary_operators,
niterations=niterations,
maxsize=maxsize,
force_run=force_run,
plot_update_delay=plot_update_delay,
parsimony=parsimony,
populations=populations,
population_size=population_size,
ncycles_per_iteration=ncycles_per_iteration,
elementwise_loss=elementwise_loss,
adaptive_parsimony_scaling=adaptive_parsimony_scaling,
optimizer_algorithm=optimizer_algorithm,
optimizer_iterations=optimizer_iterations,
batching=batching,
batch_size=batch_size,
)
def main():
blocks = {}
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
with gr.Row():
blocks = {**blocks, **_data_layout()}
with gr.Row():
blocks = {**blocks, **_settings_layout()}
with gr.Column():
blocks["pareto"] = gr.Plot()
blocks["df"] = gr.Dataframe(
headers=["complexity", "loss", "equation"],
datatype=["number", "number", "str"],
wrap=True,
column_widths=[100, 100, 300],
)
blocks["run"] = gr.Button()
blocks["run"].click(
_greet_dispatch,
inputs=[
blocks[k]
for k in [
"file_input",
"force_run",
"test_equation",
"num_points",
"noise_level",
"data_seed",
"niterations",
"maxsize",
"binary_operators",
"unary_operators",
"plot_update_delay",
"parsimony",
"populations",
"population_size",
"ncycles_per_iteration",
"elementwise_loss",
"adaptive_parsimony_scaling",
"optimizer_algorithm",
"optimizer_iterations",
"batching",
"batch_size",
]
],
outputs=blocks["df"],
)
# Any update to the equation choice will trigger a replot:
eqn_components = [
blocks["test_equation"],
blocks["num_points"],
blocks["noise_level"],
blocks["data_seed"],
]
for eqn_component in eqn_components:
eqn_component.change(replot, eqn_components, blocks["example_plot"])
# Update plot when dataframe is updated:
blocks["df"].change(
replot_pareto,
inputs=[blocks["df"], blocks["maxsize"]],
outputs=[blocks["pareto"]],
)
demo.load(replot, eqn_components, blocks["example_plot"])
demo.launch(debug=True)
def replot_pareto(df, maxsize):
plt.rcParams["font.family"] = "IBM Plex Mono"
fig, ax = plt.subplots(figsize=(6, 6), dpi=100)
if len(df) == 0 or "Equation" not in df.columns:
return fig
# Plotting the data
ax.loglog(
df["Complexity"],
df["Loss"],
marker="o",
linestyle="-",
color="#333f48",
linewidth=1.5,
markersize=6,
)
# Set the axis limits
ax.set_xlim(0.5, maxsize + 1)
ytop = 2 ** (np.ceil(np.log2(df["Loss"].max())))
ybottom = 2 ** (np.floor(np.log2(df["Loss"].min() + 1e-20)))
ax.set_ylim(ybottom, ytop)
ax.grid(True, which="both", ls="--", linewidth=0.5, color="gray", alpha=0.5)
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
# Range-frame the plot
for direction in ["bottom", "left"]:
ax.spines[direction].set_position(("outward", 10))
# Delete far ticks
ax.tick_params(axis="both", which="major", labelsize=10, direction="out", length=5)
ax.tick_params(axis="both", which="minor", labelsize=8, direction="out", length=3)
ax.set_xlabel("Complexity")
ax.set_ylabel("Loss")
fig.tight_layout(pad=2)
return fig
def replot(test_equation, num_points, noise_level, data_seed):
X, y = generate_data(test_equation, num_points, noise_level, data_seed)
x = X["x"]
plt.rcParams["font.family"] = "IBM Plex Mono"
fig, ax = plt.subplots(figsize=(6, 6), dpi=100)
ax.scatter(x, y, alpha=0.7, edgecolors="w", s=50)
ax.grid(True, which="both", ls="--", linewidth=0.5, color="gray", alpha=0.5)
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
# Range-frame the plot
for direction in ["bottom", "left"]:
ax.spines[direction].set_position(("outward", 10))
# Delete far ticks
ax.tick_params(axis="both", which="major", labelsize=10, direction="out", length=5)
ax.tick_params(axis="both", which="minor", labelsize=8, direction="out", length=3)
ax.set_xlabel("x")
ax.set_ylabel("y")
fig.tight_layout(pad=2)
return fig
if __name__ == "__main__":
main()
|