Spaces:
Running
Running
File size: 5,997 Bytes
cfca8a4 841d7fc cfca8a4 69c3f28 fa28749 cfca8a4 fa28749 69c3f28 c3d240e 907cc73 841d7fc 7b2d6ac c3d240e 841d7fc 295c6bd 5eeffc0 295c6bd 8ff33c6 841d7fc 5eeffc0 295c6bd 1f1f9b0 841d7fc 8ff33c6 1f1f9b0 a369299 8ff33c6 5eeffc0 8ff33c6 5eeffc0 8ff33c6 5eeffc0 8ff33c6 5eeffc0 8ff33c6 1f1f9b0 5eeffc0 16c9195 8ff33c6 16c9195 8ff33c6 382662a 1f1f9b0 16c9195 37f71ff ec48038 16c9195 37f71ff f570496 d3ad40f f570496 cedbbde 1f1f9b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# Eureqa.jl
Symbolic regression built on Eureqa, and interfaced by Python.
Uses regularized evolution and simulated annealing.
## Running:
You can either call the program using `eureqa` from `eureqa.py`,
or execute the program from the command line with, for example:
```bash
python eureqa.py --threads 8 --binary-operators plus mult
```
Here is the full list of arguments:
```
usage: eureqa.py [-h] [--threads THREADS] [--parsimony PARSIMONY]
[--alpha ALPHA] [--maxsize MAXSIZE]
[--niterations NITERATIONS] [--npop NPOP]
[--ncyclesperiteration NCYCLESPERITERATION] [--topn TOPN]
[--fractionReplacedHof FRACTIONREPLACEDHOF]
[--fractionReplaced FRACTIONREPLACED] [--migration MIGRATION]
[--hofMigration HOFMIGRATION]
[--shouldOptimizeConstants SHOULDOPTIMIZECONSTANTS]
[--annealing ANNEALING]
[--binary-operators BINARY_OPERATORS [BINARY_OPERATORS ...]]
[--unary-operators UNARY_OPERATORS]
optional arguments:
-h, --help show this help message and exit
--threads THREADS Number of threads (default: 4)
--parsimony PARSIMONY
How much to punish complexity (default: 0.001)
--alpha ALPHA Scaling of temperature (default: 10)
--maxsize MAXSIZE Max size of equation (default: 20)
--niterations NITERATIONS
Number of total migration periods (default: 20)
--npop NPOP Number of members per population (default: 100)
--ncyclesperiteration NCYCLESPERITERATION
Number of evolutionary cycles per migration (default:
5000)
--topn TOPN How many best species to distribute from each
population (default: 10)
--fractionReplacedHof FRACTIONREPLACEDHOF
Fraction of population to replace with hall of fame
(default: 0.1)
--fractionReplaced FRACTIONREPLACED
Fraction of population to replace with best from other
populations (default: 0.1)
--migration MIGRATION
Whether to migrate (default: True)
--hofMigration HOFMIGRATION
Whether to have hall of fame migration (default: True)
--shouldOptimizeConstants SHOULDOPTIMIZECONSTANTS
Whether to use classical optimization on constants
before every migration (doesn't impact performance
that much) (default: True)
--annealing ANNEALING
Whether to use simulated annealing (default: True)
--binary-operators BINARY_OPERATORS [BINARY_OPERATORS ...]
Binary operators. Make sure they are defined in
operators.jl (default: ['plus', 'mul'])
--unary-operators UNARY_OPERATORS
Unary operators. Make sure they are defined in
operators.jl (default: ['exp', 'sin', 'cos'])
```
## Modification
You can change the binary and unary operators in `hyperparams.jl` here:
```julia
const binops = [plus, mult]
const unaops = [sin, cos, exp];
```
E.g., you can add the function for powers with:
```julia
pow(x::Float32, y::Float32)::Float32 = sign(x)*abs(x)^y
const binops = [plus, mult, pow]
```
You can change the dataset here:
```julia
const X = convert(Array{Float32, 2}, randn(100, 5)*2)
# Here is the function we want to learn (x2^2 + cos(x3) - 5)
const y = convert(Array{Float32, 1}, ((cx,)->cx^2).(X[:, 2]) + cos.(X[:, 3]) .- 5)
```
by either loading in a dataset, or modifying the definition of `y`.
(The `.` are are used for vectorization of a scalar function)
### Hyperparameters
Annealing allows each evolutionary cycle to turn down the exploration
rate over time: at the end (temperature 0), it will only select solutions
better than existing solutions.
The following parameter, parsimony, is how much to punish complex solutions:
```julia
const parsimony = 0.01
```
Finally, the following
determins how much to scale temperature by (T between 0 and 1).
```julia
const alpha = 10.0
```
Larger alpha means more exploration.
One can also adjust the relative probabilities of each operation here:
```julia
weights = [8, 1, 1, 1, 0.1, 0.5, 2]
```
for:
1. Perturb constant
2. Mutate operator
3. Append a node
4. Delete a subtree
5. Simplify equation
6. Randomize completely
7. Do nothing
# TODO
- [ ] Hyperparameter tune
- [ ] Add mutation for constant<->variable
- [ ] Create a Python interface
- [ ] Create a benchmark for accuracy
- [ ] Create struct to pass through all hyperparameters, instead of treating as constants
- Make sure doesn't affect performance
- [ ] Use NN to generate weights over all probability distribution conditional on error and existing equation, and train on some randomly-generated equations
- [ ] Performance:
- [ ] Use an enum for functions instead of storing them?
- Current most expensive operations:
- [x] deepcopy() before the mutate, to see whether to accept or not.
- Seems like its necessary right now. But still by far the slowest option.
- [ ] Calculating the loss function - there is duplicate calculations happening.
- [ ] Declaration of the weights array every iteration
- [x] Explicit constant optimization on hall-of-fame
- Create method to find and return all constants, from left to right
- Create method to find and set all constants, in same order
- Pull up some optimization algorithm and add it. Keep the package small!
- [x] Create a benchmark for speed
- [x] Simplify subtrees with only constants beneath them. Or should I? Maybe randomly simplify sometimes?
- [x] Record hall of fame
- [x] Optionally (with hyperparameter) migrate the hall of fame, rather than current bests
- [x] Test performance of reduced precision integers
- No effect
|