File size: 7,729 Bytes
5956439
1858a22
d90120f
1858a22
 
 
 
 
 
f755fc9
1858a22
d90120f
f20792e
1858a22
 
 
 
d01ec4b
90d24f5
 
1858a22
 
f755fc9
1858a22
 
 
 
 
 
90d24f5
cdd291e
1858a22
cdd291e
1858a22
90d24f5
 
1858a22
 
f755fc9
1858a22
 
 
d90120f
1858a22
 
 
90d24f5
cdd291e
1858a22
cdd291e
1858a22
90d24f5
1858a22
 
f755fc9
1858a22
cda5da4
1858a22
d90120f
1858a22
cda5da4
1858a22
 
d90120f
1858a22
cda5da4
d90120f
1858a22
 
cdd291e
1858a22
 
 
 
d90120f
1858a22
f755fc9
d90120f
490251d
cdd291e
 
 
 
d94ce53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d90120f
d94ce53
 
 
 
 
 
d90120f
d94ce53
 
 
 
 
 
 
d90120f
d94ce53
d90120f
d94ce53
 
 
 
 
d90120f
 
d94ce53
 
d90120f
d94ce53
 
 
 
 
 
 
 
 
 
f5943a7
d94ce53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d90120f
d94ce53
 
 
 
 
 
 
d90120f
d94ce53
 
 
 
 
 
 
 
 
d90120f
d94ce53
 
be5629a
 
 
 
 
 
 
9ab2202
be5629a
 
 
 
 
9ab2202
be5629a
 
fee76f1
 
be5629a
 
 
fee76f1
be5629a
fee76f1
 
be5629a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ab2202
be5629a
 
 
 
 
 
 
 
 
 
 
 
 
9ab2202
 
be5629a
9ab2202
 
be5629a
9ab2202
 
be5629a
 
 
 
 
9ab2202
be5629a
 
670f6a4
 
be5629a
9ae2825
be5629a
 
9ae2825
 
be5629a
 
 
 
 
 
 
 
 
 
 
 
9ae2825
be5629a
 
 
 
 
 
 
 
 
 
 
9ae2825
be5629a
 
9ae2825
be5629a
 
 
490251d
 
d90120f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Toy Examples with Code

## Preamble

```python
import numpy as np
from pysr import *
```

## 1. Simple search

Here's a simple example where we
find the expression `2 cos(x3) + x0^2 - 2`.

```python
X = 2 * np.random.randn(100, 5)
y = 2 * np.cos(X[:, 3]) + X[:, 0] ** 2 - 2
model = PySRRegressor(binary_operators=["+", "-", "*", "/"])
model.fit(X, y)
print(model)
```

## 2. Custom operator

Here, we define a custom operator and use it to find an expression:

```python
X = 2 * np.random.randn(100, 5)
y = 1 / X[:, 0]
model = PySRRegressor(
    binary_operators=["+", "*"],
    unary_operators=["inv(x) = 1/x"],
    extra_sympy_mappings={"inv": lambda x: 1/x},
)
model.fit(X, y)
print(model)
```

## 3. Multiple outputs

Here, we do the same thing, but with multiple expressions at once,
each requiring a different feature.

```python
X = 2 * np.random.randn(100, 5)
y = 1 / X[:, [0, 1, 2]]
model = PySRRegressor(
    binary_operators=["+", "*"],
    unary_operators=["inv(x) = 1/x"],
    extra_sympy_mappings={"inv": lambda x: 1/x},
)
model.fit(X, y)
```

## 4. Plotting an expression

For now, let's consider the expressions for output 0.
We can see the LaTeX version of this with:

```python
model.latex()[0]
```

or output 1 with `model.latex()[1]`.

Let's plot the prediction against the truth:

```python
from matplotlib import pyplot as plt
plt.scatter(y[:, 0], model.predict(X)[:, 0])
plt.xlabel('Truth')
plt.ylabel('Prediction')
plt.show()
```

Which gives us:

![Truth vs Prediction](images/example_plot.png)

We may also plot the output of a particular expression
by passing the index of the expression to `predict` (or
`sympy` or `latex` as well)

## 5. Feature selection

PySR and evolution-based symbolic regression in general performs
very poorly when the number of features is large.
Even, say, 10 features might be too much for a typical equation search.

If you are dealing with high-dimensional data with a particular type of structure,
you might consider using deep learning to break the problem into
smaller "chunks" which can then be solved by PySR, as explained in the paper
[2006.11287](https://arxiv.org/abs/2006.11287).

For tabular datasets, this is a bit trickier. Luckily, PySR has a built-in feature
selection mechanism. Simply declare the parameter `select_k_features=5`, for selecting
the most important 5 features.

Here is an example. Let's say we have 30 input features and 300 data points, but only 2
of those features are actually used:

```python
X = np.random.randn(300, 30)
y = X[:, 3]**2 - X[:, 19]**2 + 1.5
```

Let's create a model with the feature selection argument set up:

```python
model = PySRRegressor(
    binary_operators=["+", "-", "*", "/"],
    unary_operators=["exp"],
    select_k_features=5,
)
```

Now let's fit this:

```python
model.fit(X, y)
```

Before the Julia backend is launched, you can see the string:

```text
Using features ['x3', 'x5', 'x7', 'x19', 'x21']
```

which indicates that the feature selection (powered by a gradient-boosting tree)
has successfully selected the relevant two features.

This fit should find the solution quickly, whereas with the huge number of features,
it would have struggled.

This simple preprocessing step is enough to simplify our tabular dataset,
but again, for more structured datasets, you should try the deep learning
approach mentioned above.

## 6. Denoising

Many datasets, especially in the observational sciences,
contain intrinsic noise. PySR is noise robust itself, as it is simply optimizing a loss function,
but there are still some additional steps you can take to reduce the effect of noise.

One thing you could do, which we won't detail here, is to create a custom log-likelihood
given some assumed noise model. By passing weights to the fit function, and
defining a custom loss function such as `loss="myloss(x, y, w) = w * (x - y)^2"`,
you can define any sort of log-likelihood you wish. (However, note that it must be bounded at zero)

However, the simplest thing to do is preprocessing, just like for feature selection. To do this,
set the parameter `denoise=True`. This will fit a Gaussian process (containing a white noise kernel)
to the input dataset, and predict new targets (which are assumed to be denoised) from that Gaussian process.

For example:

```python
X = np.random.randn(100, 5)
noise = np.random.randn(100) * 0.1
y = np.exp(X[:, 0]) + X[:, 1] + X[:, 2] + noise
```

Let's create and fit a model with the denoising argument set up:

```python
model = PySRRegressor(
    binary_operators=["+", "-", "*", "/"],
    unary_operators=["exp"],
    denoise=True,
)
model.fit(X, y)
print(model)
```

If all goes well, you should find that it predicts the correct input equation, without the noise term!

## 7. Julia packages and types

PySR uses [SymbolicRegression.jl](https://github.com/MilesCranmer/SymbolicRegression.jl)
as its search backend. This is a pure Julia package, and so can interface easily with any other
Julia package.
For some tasks, it may be necessary to load such a package.

For example, let's say we wish to discovery the following relationship:

$$ y = p_{3x + 1} - 5, $$

where $p_i$ is the $i$th prime number, and $x$ is the input feature.

Let's see if we can discover this using
the [Primes.jl](https://github.com/JuliaMath/Primes.jl) package.

First, let's manually initialize the Julia backend
(here, with 8 threads and `-O3`):

```python
import pysr
jl = pysr.julia_helpers.init_julia(julia_kwargs={"threads": 8, "optimize": 3})
```

`jl` stores the Julia runtime.

Now, let's run some Julia code to add the Primes.jl
package to the PySR environment:

```python
jl.eval("""
import Pkg
Pkg.add("Primes")
""")
```

This imports the Julia package manager, and uses it to install
`Primes.jl`. Now let's import `Primes.jl`:

```python
jl.eval("import Primes")
```

Now, we define a custom operator:

```python
jl.eval("""
function p(i::T) where T
    if (0.5 < i < 1000)
        return T(Primes.prime(round(Int, i)))
    else
        return T(NaN)
    end
end
""")
```

We have created a a function `p`, which takes an arbitrary number as input.
`p` first checks whether the input is between 0.5 and 1000.
If out-of-bounds, it returns `NaN`.
If in-bounds, it rounds it to the nearest integer, compures the corresponding prime number, and then
converts it to the same type as input.

Next, let's generate a list of primes for our test dataset.
Since we are using PyJulia, we can just call `p` directly to do this:

```python
primes = {i: jl.p(i*1.0) for i in range(1, 999)}
```

Next, let's use this list of primes to create a dataset of $x, y$ pairs:

```python
import numpy as np

X = np.random.randint(0, 100, 100)[:, None]
y = [primes[3*X[i, 0] + 1] - 5 + np.random.randn()*0.001 for i in range(100)]
```

Note that we have also added a tiny bit of noise to the dataset.

Finally, let's create a PySR model, and pass the custom operator. We also need to define the sympy equivalent, which we can leave as a placeholder for now:

```python
from pysr import PySRRegressor
import sympy

class sympy_p(sympy.Function):
    pass

model = PySRRegressor(
    binary_operators=["+", "-", "*", "/"],
    unary_operators=["p"],
    niterations=100,
    extra_sympy_mappings={"p": sympy_p}
)
```

We are all set to go! Let's see if we can find the true relation:

```python
model.fit(X, y)
```

if all works out, you should be able to see the true relation (note that the constant offset might not be exactly 1, since it is allowed to round to the nearest integer).
You can get the sympy version of the best equation with:

```python
model.sympy()
```

## 8. Additional features

For the many other features available in PySR, please
read the [Options section](options.md).