Spaces:
Sleeping
Sleeping
File size: 7,729 Bytes
5956439 1858a22 d90120f 1858a22 f755fc9 1858a22 d90120f f20792e 1858a22 d01ec4b 90d24f5 1858a22 f755fc9 1858a22 90d24f5 cdd291e 1858a22 cdd291e 1858a22 90d24f5 1858a22 f755fc9 1858a22 d90120f 1858a22 90d24f5 cdd291e 1858a22 cdd291e 1858a22 90d24f5 1858a22 f755fc9 1858a22 cda5da4 1858a22 d90120f 1858a22 cda5da4 1858a22 d90120f 1858a22 cda5da4 d90120f 1858a22 cdd291e 1858a22 d90120f 1858a22 f755fc9 d90120f 490251d cdd291e d94ce53 d90120f d94ce53 d90120f d94ce53 d90120f d94ce53 d90120f d94ce53 d90120f d94ce53 d90120f d94ce53 f5943a7 d94ce53 d90120f d94ce53 d90120f d94ce53 d90120f d94ce53 be5629a 9ab2202 be5629a 9ab2202 be5629a fee76f1 be5629a fee76f1 be5629a fee76f1 be5629a 9ab2202 be5629a 9ab2202 be5629a 9ab2202 be5629a 9ab2202 be5629a 9ab2202 be5629a 670f6a4 be5629a 9ae2825 be5629a 9ae2825 be5629a 9ae2825 be5629a 9ae2825 be5629a 9ae2825 be5629a 490251d d90120f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
# Toy Examples with Code
## Preamble
```python
import numpy as np
from pysr import *
```
## 1. Simple search
Here's a simple example where we
find the expression `2 cos(x3) + x0^2 - 2`.
```python
X = 2 * np.random.randn(100, 5)
y = 2 * np.cos(X[:, 3]) + X[:, 0] ** 2 - 2
model = PySRRegressor(binary_operators=["+", "-", "*", "/"])
model.fit(X, y)
print(model)
```
## 2. Custom operator
Here, we define a custom operator and use it to find an expression:
```python
X = 2 * np.random.randn(100, 5)
y = 1 / X[:, 0]
model = PySRRegressor(
binary_operators=["+", "*"],
unary_operators=["inv(x) = 1/x"],
extra_sympy_mappings={"inv": lambda x: 1/x},
)
model.fit(X, y)
print(model)
```
## 3. Multiple outputs
Here, we do the same thing, but with multiple expressions at once,
each requiring a different feature.
```python
X = 2 * np.random.randn(100, 5)
y = 1 / X[:, [0, 1, 2]]
model = PySRRegressor(
binary_operators=["+", "*"],
unary_operators=["inv(x) = 1/x"],
extra_sympy_mappings={"inv": lambda x: 1/x},
)
model.fit(X, y)
```
## 4. Plotting an expression
For now, let's consider the expressions for output 0.
We can see the LaTeX version of this with:
```python
model.latex()[0]
```
or output 1 with `model.latex()[1]`.
Let's plot the prediction against the truth:
```python
from matplotlib import pyplot as plt
plt.scatter(y[:, 0], model.predict(X)[:, 0])
plt.xlabel('Truth')
plt.ylabel('Prediction')
plt.show()
```
Which gives us:
![Truth vs Prediction](images/example_plot.png)
We may also plot the output of a particular expression
by passing the index of the expression to `predict` (or
`sympy` or `latex` as well)
## 5. Feature selection
PySR and evolution-based symbolic regression in general performs
very poorly when the number of features is large.
Even, say, 10 features might be too much for a typical equation search.
If you are dealing with high-dimensional data with a particular type of structure,
you might consider using deep learning to break the problem into
smaller "chunks" which can then be solved by PySR, as explained in the paper
[2006.11287](https://arxiv.org/abs/2006.11287).
For tabular datasets, this is a bit trickier. Luckily, PySR has a built-in feature
selection mechanism. Simply declare the parameter `select_k_features=5`, for selecting
the most important 5 features.
Here is an example. Let's say we have 30 input features and 300 data points, but only 2
of those features are actually used:
```python
X = np.random.randn(300, 30)
y = X[:, 3]**2 - X[:, 19]**2 + 1.5
```
Let's create a model with the feature selection argument set up:
```python
model = PySRRegressor(
binary_operators=["+", "-", "*", "/"],
unary_operators=["exp"],
select_k_features=5,
)
```
Now let's fit this:
```python
model.fit(X, y)
```
Before the Julia backend is launched, you can see the string:
```text
Using features ['x3', 'x5', 'x7', 'x19', 'x21']
```
which indicates that the feature selection (powered by a gradient-boosting tree)
has successfully selected the relevant two features.
This fit should find the solution quickly, whereas with the huge number of features,
it would have struggled.
This simple preprocessing step is enough to simplify our tabular dataset,
but again, for more structured datasets, you should try the deep learning
approach mentioned above.
## 6. Denoising
Many datasets, especially in the observational sciences,
contain intrinsic noise. PySR is noise robust itself, as it is simply optimizing a loss function,
but there are still some additional steps you can take to reduce the effect of noise.
One thing you could do, which we won't detail here, is to create a custom log-likelihood
given some assumed noise model. By passing weights to the fit function, and
defining a custom loss function such as `loss="myloss(x, y, w) = w * (x - y)^2"`,
you can define any sort of log-likelihood you wish. (However, note that it must be bounded at zero)
However, the simplest thing to do is preprocessing, just like for feature selection. To do this,
set the parameter `denoise=True`. This will fit a Gaussian process (containing a white noise kernel)
to the input dataset, and predict new targets (which are assumed to be denoised) from that Gaussian process.
For example:
```python
X = np.random.randn(100, 5)
noise = np.random.randn(100) * 0.1
y = np.exp(X[:, 0]) + X[:, 1] + X[:, 2] + noise
```
Let's create and fit a model with the denoising argument set up:
```python
model = PySRRegressor(
binary_operators=["+", "-", "*", "/"],
unary_operators=["exp"],
denoise=True,
)
model.fit(X, y)
print(model)
```
If all goes well, you should find that it predicts the correct input equation, without the noise term!
## 7. Julia packages and types
PySR uses [SymbolicRegression.jl](https://github.com/MilesCranmer/SymbolicRegression.jl)
as its search backend. This is a pure Julia package, and so can interface easily with any other
Julia package.
For some tasks, it may be necessary to load such a package.
For example, let's say we wish to discovery the following relationship:
$$ y = p_{3x + 1} - 5, $$
where $p_i$ is the $i$th prime number, and $x$ is the input feature.
Let's see if we can discover this using
the [Primes.jl](https://github.com/JuliaMath/Primes.jl) package.
First, let's manually initialize the Julia backend
(here, with 8 threads and `-O3`):
```python
import pysr
jl = pysr.julia_helpers.init_julia(julia_kwargs={"threads": 8, "optimize": 3})
```
`jl` stores the Julia runtime.
Now, let's run some Julia code to add the Primes.jl
package to the PySR environment:
```python
jl.eval("""
import Pkg
Pkg.add("Primes")
""")
```
This imports the Julia package manager, and uses it to install
`Primes.jl`. Now let's import `Primes.jl`:
```python
jl.eval("import Primes")
```
Now, we define a custom operator:
```python
jl.eval("""
function p(i::T) where T
if (0.5 < i < 1000)
return T(Primes.prime(round(Int, i)))
else
return T(NaN)
end
end
""")
```
We have created a a function `p`, which takes an arbitrary number as input.
`p` first checks whether the input is between 0.5 and 1000.
If out-of-bounds, it returns `NaN`.
If in-bounds, it rounds it to the nearest integer, compures the corresponding prime number, and then
converts it to the same type as input.
Next, let's generate a list of primes for our test dataset.
Since we are using PyJulia, we can just call `p` directly to do this:
```python
primes = {i: jl.p(i*1.0) for i in range(1, 999)}
```
Next, let's use this list of primes to create a dataset of $x, y$ pairs:
```python
import numpy as np
X = np.random.randint(0, 100, 100)[:, None]
y = [primes[3*X[i, 0] + 1] - 5 + np.random.randn()*0.001 for i in range(100)]
```
Note that we have also added a tiny bit of noise to the dataset.
Finally, let's create a PySR model, and pass the custom operator. We also need to define the sympy equivalent, which we can leave as a placeholder for now:
```python
from pysr import PySRRegressor
import sympy
class sympy_p(sympy.Function):
pass
model = PySRRegressor(
binary_operators=["+", "-", "*", "/"],
unary_operators=["p"],
niterations=100,
extra_sympy_mappings={"p": sympy_p}
)
```
We are all set to go! Let's see if we can find the true relation:
```python
model.fit(X, y)
```
if all works out, you should be able to see the true relation (note that the constant offset might not be exactly 1, since it is allowed to round to the nearest integer).
You can get the sympy version of the best equation with:
```python
model.sympy()
```
## 8. Additional features
For the many other features available in PySR, please
read the [Options section](options.md).
|