Spaces:
Running
Running
File size: 11,371 Bytes
cc2f913 55b1295 cc2f913 0a3d3e9 cc2f913 7d4300a cc2f913 7acfb32 cc2f913 b4e0cde 55b1295 0a3d3e9 55b1295 0a3d3e9 55b1295 cc2f913 7d4300a cc2f913 55b1295 0a3d3e9 55b1295 0a3d3e9 55b1295 0a3d3e9 55b1295 0a3d3e9 cc2f913 0a3d3e9 cc2f913 0a3d3e9 a95ae71 0a3d3e9 a95ae71 0a3d3e9 a95ae71 cc2f913 0a3d3e9 cc2f913 55b1295 b4e0cde c7f3dc8 55b1295 b4e0cde 55b1295 cc2f913 c7f3dc8 b4e0cde 0a3d3e9 b4e0cde 0a3d3e9 b4e0cde 0a3d3e9 b4e0cde 0a3d3e9 b4e0cde 0a3d3e9 cc2f913 7d4300a cc2f913 7d4300a cc2f913 7acfb32 03d4ec3 7d4300a 03d4ec3 cc2f913 7d4300a 7acfb32 3fb2dca 7acfb32 cc2f913 0a3d3e9 b4e0cde 0a3d3e9 cc2f913 7d4300a 0a3d3e9 cc2f913 0a3d3e9 cc2f913 0a3d3e9 cc2f913 0a3d3e9 c25614a 0a3d3e9 7d4300a cc2f913 7acfb32 cc2f913 0a3d3e9 7d4300a cc2f913 7d4300a cc2f913 b4e0cde 55b1295 7d4300a cc2f913 0a3d3e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
"""Start a hyperoptimization from a single node"""
import sys
import numpy as np
import pickle as pkl
from pysr import PySRRegressor
import hyperopt
from hyperopt import hp, fmin, tpe, Trials
from hyperopt.fmin import generate_trials_to_calculate
# Change the following code to your file
################################################################################
TRIALS_FOLDER = "trials2"
NUMBER_TRIALS_PER_RUN = 1
timeout_in_minutes = 10
# Test run to compile everything:
binary_operators = ["*", "/", "+", "-"]
unary_operators = ["sin", "cos", "exp", "log"]
julia_project = None
procs = 4
model = PySRRegressor(
binary_operators=binary_operators,
unary_operators=unary_operators,
timeout_in_seconds=30,
julia_project=julia_project,
procs=procs,
)
model.fit(np.random.randn(100, 3), np.random.randn(100))
def run_trial(args):
"""Evaluate the model loss using the hyperparams in args
:args: A dictionary containing all hyperparameters
:returns: Dict with status and loss from cross-validation
"""
# The arguments which are integers:
integer_args = [
"populations",
"niterations",
"ncyclesperiteration",
"npop",
"topn",
"maxsize",
"optimizer_nrestarts",
"optimizer_iterations",
]
# Set these to int types:
for k, v in args.items():
if k in integer_args:
args[k] = int(v)
# Duplicate this argument:
args["tournament_selection_n"] = args["topn"]
# Invalid hyperparams:
invalid = args["npop"] < args["topn"]
if invalid:
return dict(status="fail", loss=float("inf"))
args["timeout_in_seconds"] = timeout_in_minutes * 60
args["julia_project"] = julia_project
args["procs"] = procs
print(f"Running trial with args: {args}")
# Create the dataset:
ntrials = 3
losses = []
# Old datasets:
eval_str = [
"np.cos(2.3 * X[:, 0]) * np.sin(2.3 * X[:, 0] * X[:, 1] * X[:, 2]) - 10.0",
"(np.exp(X[:, 3]*0.3) + 3)/(np.exp(X[:, 1]*0.2) + np.cos(X[:, 0]) + 1.1)",
# "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5",
# "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)",
# "X[:, 0] * np.sin(2*np.pi * (X[:, 1] * X[:, 2] - X[:, 3] / X[:, 4])) + 3.0",
]
for expression in eval_str:
expression_losses = []
for i in range(ntrials):
rstate = np.random.RandomState(i)
X = 3 * rstate.randn(200, 5)
y = eval(expression)
# Normalize y so that losses are fair:
y = (y - np.average(y)) / np.std(y)
# Create the model:
model = PySRRegressor(**args)
# Run the model:
try:
model.fit(X, y)
except RuntimeError:
return dict(status="fail", loss=float("inf"))
# Compute loss:
cur_loss = float(model.get_best()["loss"])
expression_losses.append(cur_loss)
losses.append(np.median(expression_losses))
loss = np.average(losses)
print(f"Finished with {loss}", str(args))
return dict(status="ok", loss=loss)
space = dict(
# model_selection="best",
model_selection=hp.choice("model_selection", ["accuracy"]),
# binary_operators=None,
binary_operators=hp.choice("binary_operators", [binary_operators]),
# unary_operators=None,
unary_operators=hp.choice("unary_operators", [unary_operators]),
# populations=100,
populations=hp.qloguniform("populations", np.log(10), np.log(1000), 1),
# niterations=4,
niterations=hp.choice(
"niterations", [10000]
), # We will quit automatically based on a clock.
# ncyclesperiteration=100,
ncyclesperiteration=hp.qloguniform(
"ncyclesperiteration", np.log(10), np.log(5000), 1
),
# alpha=0.1,
alpha=hp.loguniform("alpha", np.log(0.0001), np.log(1000)),
# annealing=False,
annealing=hp.choice("annealing", [False, True]),
# fractionReplaced=0.01,
fractionReplaced=hp.loguniform("fractionReplaced", np.log(0.0001), np.log(0.5)),
# fractionReplacedHof=0.005,
fractionReplacedHof=hp.loguniform(
"fractionReplacedHof", np.log(0.0001), np.log(0.5)
),
# npop=100,
npop=hp.qloguniform("npop", np.log(20), np.log(1000), 1),
# parsimony=1e-4,
parsimony=hp.loguniform("parsimony", np.log(0.0001), np.log(0.5)),
# topn=10,
topn=hp.qloguniform("topn", np.log(2), np.log(50), 1),
# weightAddNode=1,
weightAddNode=hp.loguniform("weightAddNode", np.log(0.0001), np.log(100)),
# weightInsertNode=3,
weightInsertNode=hp.loguniform("weightInsertNode", np.log(0.0001), np.log(100)),
# weightDeleteNode=3,
weightDeleteNode=hp.loguniform("weightDeleteNode", np.log(0.0001), np.log(100)),
# weightDoNothing=1,
weightDoNothing=hp.loguniform("weightDoNothing", np.log(0.0001), np.log(100)),
# weightMutateConstant=10,
weightMutateConstant=hp.loguniform(
"weightMutateConstant", np.log(0.0001), np.log(100)
),
# weightMutateOperator=1,
weightMutateOperator=hp.loguniform(
"weightMutateOperator", np.log(0.0001), np.log(100)
),
# weightRandomize=1,
weightRandomize=hp.loguniform("weightRandomize", np.log(0.0001), np.log(100)),
# weightSimplify=0.002,
weightSimplify=hp.choice("weightSimplify", [0.002]), # One of these is fixed.
# crossoverProbability=0.01,
crossoverProbability=hp.loguniform(
"crossoverProbability", np.log(0.00001), np.log(0.2)
),
# perturbationFactor=1.0,
perturbationFactor=hp.loguniform("perturbationFactor", np.log(0.0001), np.log(100)),
# maxsize=20,
maxsize=hp.choice("maxsize", [30]),
# warmupMaxsizeBy=0.0,
warmupMaxsizeBy=hp.uniform("warmupMaxsizeBy", 0.0, 0.5),
# useFrequency=True,
useFrequency=hp.choice("useFrequency", [True, False]),
# optimizer_nrestarts=3,
optimizer_nrestarts=hp.quniform("optimizer_nrestarts", 1, 10, 1),
# optimize_probability=1.0,
optimize_probability=hp.uniform("optimize_probability", 0.0, 1.0),
# optimizer_iterations=10,
optimizer_iterations=hp.quniform("optimizer_iterations", 1, 10, 1),
# tournament_selection_p=1.0,
tournament_selection_p=hp.uniform("tournament_selection_p", 0.0, 1.0),
)
rand_between = lambda lo, hi: (np.random.rand() * (hi - lo) + lo)
init_vals = [
dict(
model_selection=0, # 0 means first choice
binary_operators=0,
unary_operators=0,
populations=100.0,
niterations=0,
ncyclesperiteration=rand_between(50, 150),
alpha=rand_between(0.05, 0.2),
annealing=0,
# fractionReplaced=0.01,
fractionReplaced=0.01,
# fractionReplacedHof=0.005,
fractionReplacedHof=0.005,
# npop=100,
npop=rand_between(50, 200),
# parsimony=1e-4,
parsimony=1e-4,
# topn=10,
topn=10.0,
# weightAddNode=1,
weightAddNode=1.0,
# weightInsertNode=3,
weightInsertNode=3.0,
# weightDeleteNode=3,
weightDeleteNode=3.0,
# weightDoNothing=1,
weightDoNothing=1.0,
# weightMutateConstant=10,
weightMutateConstant=10.0,
# weightMutateOperator=1,
weightMutateOperator=1.0,
# weightRandomize=1,
weightRandomize=1.0,
# weightSimplify=0.002,
weightSimplify=0, # One of these is fixed.
# crossoverProbability=0.01
crossoverProbability=0.01,
# perturbationFactor=1.0,
perturbationFactor=1.0,
# maxsize=20,
maxsize=0,
# warmupMaxsizeBy=0.0,
warmupMaxsizeBy=0.0,
# useFrequency=True,
useFrequency=1,
# optimizer_nrestarts=3,
optimizer_nrestarts=3.0,
# optimize_probability=1.0,
optimize_probability=1.0,
# optimizer_iterations=10,
optimizer_iterations=10.0,
# tournament_selection_p=1.0,
tournament_selection_p=rand_between(0.9, 0.999),
)
]
################################################################################
def merge_trials(trials1, trials2_slice):
"""Merge two hyperopt trials objects
:trials1: The primary trials object
:trials2_slice: A slice of the trials object to be merged,
obtained with, e.g., trials2.trials[:10]
:returns: The merged trials object
"""
max_tid = 0
if len(trials1.trials) > 0:
max_tid = max([trial["tid"] for trial in trials1.trials])
for trial in trials2_slice:
tid = trial["tid"] + max_tid + 2
local_hyperopt_trial = Trials().new_trial_docs(
tids=[None], specs=[None], results=[None], miscs=[None]
)
local_hyperopt_trial[0] = trial
local_hyperopt_trial[0]["tid"] = tid
local_hyperopt_trial[0]["misc"]["tid"] = tid
for key in local_hyperopt_trial[0]["misc"]["idxs"].keys():
local_hyperopt_trial[0]["misc"]["idxs"][key] = [tid]
trials1.insert_trial_docs(local_hyperopt_trial)
trials1.refresh()
return trials1
import glob
path = TRIALS_FOLDER + "/*.pkl"
n_prior_trials = len(list(glob.glob(path)))
loaded_fnames = []
trials = generate_trials_to_calculate(init_vals)
i = 0
n = NUMBER_TRIALS_PER_RUN
# Run new hyperparameter trials until killed
while True:
np.random.seed()
# Load up all runs:
if i > 0:
for fname in glob.glob(path):
if fname in loaded_fnames:
continue
trials_obj = pkl.load(open(fname, "rb"))
n_trials = trials_obj["n"]
trials_obj = trials_obj["trials"]
if len(loaded_fnames) == 0:
trials = trials_obj
else:
print("Merging trials")
trials = merge_trials(trials, trials_obj.trials[-n_trials:])
loaded_fnames.append(fname)
print("Loaded trials", len(loaded_fnames))
if len(loaded_fnames) == 0:
trials = Trials()
try:
best = fmin(
run_trial,
space=space,
algo=tpe.suggest,
max_evals=n + len(trials.trials),
trials=trials,
verbose=1,
rstate=np.random.RandomState(np.random.randint(1, 10**6)),
)
except hyperopt.exceptions.AllTrialsFailed:
continue
else:
best = fmin(
run_trial,
space=space,
algo=tpe.suggest,
max_evals=1,
trials=trials,
points_to_evaluate=init_vals,
)
print("current best", best)
hyperopt_trial = Trials()
# Merge with empty trials dataset:
if i == 0:
save_trials = merge_trials(hyperopt_trial, trials.trials)
else:
save_trials = merge_trials(hyperopt_trial, trials.trials[-n:])
new_fname = TRIALS_FOLDER + "/" + str(np.random.randint(0, sys.maxsize)) + ".pkl"
pkl.dump({"trials": save_trials, "n": n}, open(new_fname, "wb"))
loaded_fnames.append(new_fname)
i += 1
|