File size: 11,371 Bytes
cc2f913
 
 
 
55b1295
cc2f913
 
0a3d3e9
cc2f913
7d4300a
cc2f913
7acfb32
cc2f913
b4e0cde
55b1295
 
 
 
 
0a3d3e9
55b1295
 
 
 
 
0a3d3e9
55b1295
 
cc2f913
7d4300a
cc2f913
 
 
 
 
 
 
55b1295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a3d3e9
55b1295
0a3d3e9
 
 
55b1295
 
0a3d3e9
 
55b1295
 
0a3d3e9
 
 
 
 
 
 
cc2f913
0a3d3e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc2f913
0a3d3e9
 
 
a95ae71
0a3d3e9
a95ae71
0a3d3e9
a95ae71
cc2f913
0a3d3e9
cc2f913
 
55b1295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e0cde
c7f3dc8
 
 
55b1295
 
 
b4e0cde
55b1295
 
 
 
 
 
 
 
 
 
 
 
 
cc2f913
c7f3dc8
b4e0cde
0a3d3e9
 
 
 
 
 
 
b4e0cde
 
0a3d3e9
 
 
 
 
 
b4e0cde
0a3d3e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e0cde
 
0a3d3e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e0cde
0a3d3e9
 
 
cc2f913
 
7d4300a
cc2f913
 
 
 
 
 
 
 
 
 
 
7d4300a
cc2f913
 
7acfb32
03d4ec3
7d4300a
 
03d4ec3
 
 
 
 
 
cc2f913
 
 
7d4300a
7acfb32
3fb2dca
7acfb32
 
 
cc2f913
0a3d3e9
b4e0cde
0a3d3e9
 
cc2f913
 
 
 
 
7d4300a
0a3d3e9
 
 
 
cc2f913
0a3d3e9
 
 
 
 
 
 
 
cc2f913
0a3d3e9
cc2f913
0a3d3e9
 
 
 
 
 
 
 
 
 
 
 
c25614a
0a3d3e9
 
 
 
7d4300a
 
cc2f913
 
7acfb32
cc2f913
0a3d3e9
7d4300a
cc2f913
7d4300a
cc2f913
 
 
b4e0cde
 
 
 
 
55b1295
7d4300a
cc2f913
0a3d3e9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
"""Start a hyperoptimization from a single node"""
import sys
import numpy as np
import pickle as pkl
from pysr import PySRRegressor
import hyperopt
from hyperopt import hp, fmin, tpe, Trials
from hyperopt.fmin import generate_trials_to_calculate

# Change the following code to your file
################################################################################
TRIALS_FOLDER = "trials2"
NUMBER_TRIALS_PER_RUN = 1
timeout_in_minutes = 10

# Test run to compile everything:
binary_operators = ["*", "/", "+", "-"]
unary_operators = ["sin", "cos", "exp", "log"]
julia_project = None
procs = 4
model = PySRRegressor(
    binary_operators=binary_operators,
    unary_operators=unary_operators,
    timeout_in_seconds=30,
    julia_project=julia_project,
    procs=procs,
)
model.fit(np.random.randn(100, 3), np.random.randn(100))


def run_trial(args):
    """Evaluate the model loss using the hyperparams in args

    :args: A dictionary containing all hyperparameters
    :returns: Dict with status and loss from cross-validation

    """
    # The arguments which are integers:
    integer_args = [
        "populations",
        "niterations",
        "ncyclesperiteration",
        "npop",
        "topn",
        "maxsize",
        "optimizer_nrestarts",
        "optimizer_iterations",
    ]
    # Set these to int types:
    for k, v in args.items():
        if k in integer_args:
            args[k] = int(v)

    # Duplicate this argument:
    args["tournament_selection_n"] = args["topn"]

    # Invalid hyperparams:
    invalid = args["npop"] < args["topn"]
    if invalid:
        return dict(status="fail", loss=float("inf"))

    args["timeout_in_seconds"] = timeout_in_minutes * 60
    args["julia_project"] = julia_project
    args["procs"] = procs

    print(f"Running trial with args: {args}")

    # Create the dataset:
    ntrials = 3
    losses = []

    # Old datasets:
    eval_str = [
        "np.cos(2.3 * X[:, 0]) * np.sin(2.3 * X[:, 0] * X[:, 1] * X[:, 2]) - 10.0",
        "(np.exp(X[:, 3]*0.3) + 3)/(np.exp(X[:, 1]*0.2) + np.cos(X[:, 0]) + 1.1)",
        # "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5",
        # "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)",
        # "X[:, 0] * np.sin(2*np.pi * (X[:, 1] * X[:, 2] - X[:, 3] / X[:, 4])) + 3.0",
    ]

    for expression in eval_str:
        expression_losses = []
        for i in range(ntrials):
            rstate = np.random.RandomState(i)
            X = 3 * rstate.randn(200, 5)
            y = eval(expression)

            # Normalize y so that losses are fair:
            y = (y - np.average(y)) / np.std(y)

            # Create the model:
            model = PySRRegressor(**args)

            # Run the model:
            try:
                model.fit(X, y)
            except RuntimeError:
                return dict(status="fail", loss=float("inf"))

            # Compute loss:
            cur_loss = float(model.get_best()["loss"])
            expression_losses.append(cur_loss)

        losses.append(np.median(expression_losses))

    loss = np.average(losses)
    print(f"Finished with {loss}", str(args))

    return dict(status="ok", loss=loss)


space = dict(
    #     model_selection="best",
    model_selection=hp.choice("model_selection", ["accuracy"]),
    #     binary_operators=None,
    binary_operators=hp.choice("binary_operators", [binary_operators]),
    #     unary_operators=None,
    unary_operators=hp.choice("unary_operators", [unary_operators]),
    #     populations=100,
    populations=hp.qloguniform("populations", np.log(10), np.log(1000), 1),
    #     niterations=4,
    niterations=hp.choice(
        "niterations", [10000]
    ),  # We will quit automatically based on a clock.
    #     ncyclesperiteration=100,
    ncyclesperiteration=hp.qloguniform(
        "ncyclesperiteration", np.log(10), np.log(5000), 1
    ),
    #     alpha=0.1,
    alpha=hp.loguniform("alpha", np.log(0.0001), np.log(1000)),
    #     annealing=False,
    annealing=hp.choice("annealing", [False, True]),
    #     fractionReplaced=0.01,
    fractionReplaced=hp.loguniform("fractionReplaced", np.log(0.0001), np.log(0.5)),
    #     fractionReplacedHof=0.005,
    fractionReplacedHof=hp.loguniform(
        "fractionReplacedHof", np.log(0.0001), np.log(0.5)
    ),
    #     npop=100,
    npop=hp.qloguniform("npop", np.log(20), np.log(1000), 1),
    #     parsimony=1e-4,
    parsimony=hp.loguniform("parsimony", np.log(0.0001), np.log(0.5)),
    #     topn=10,
    topn=hp.qloguniform("topn", np.log(2), np.log(50), 1),
    #     weightAddNode=1,
    weightAddNode=hp.loguniform("weightAddNode", np.log(0.0001), np.log(100)),
    #     weightInsertNode=3,
    weightInsertNode=hp.loguniform("weightInsertNode", np.log(0.0001), np.log(100)),
    #     weightDeleteNode=3,
    weightDeleteNode=hp.loguniform("weightDeleteNode", np.log(0.0001), np.log(100)),
    #     weightDoNothing=1,
    weightDoNothing=hp.loguniform("weightDoNothing", np.log(0.0001), np.log(100)),
    #     weightMutateConstant=10,
    weightMutateConstant=hp.loguniform(
        "weightMutateConstant", np.log(0.0001), np.log(100)
    ),
    #     weightMutateOperator=1,
    weightMutateOperator=hp.loguniform(
        "weightMutateOperator", np.log(0.0001), np.log(100)
    ),
    #     weightRandomize=1,
    weightRandomize=hp.loguniform("weightRandomize", np.log(0.0001), np.log(100)),
    #     weightSimplify=0.002,
    weightSimplify=hp.choice("weightSimplify", [0.002]),  # One of these is fixed.
    #     crossoverProbability=0.01,
    crossoverProbability=hp.loguniform(
        "crossoverProbability", np.log(0.00001), np.log(0.2)
    ),
    #     perturbationFactor=1.0,
    perturbationFactor=hp.loguniform("perturbationFactor", np.log(0.0001), np.log(100)),
    #     maxsize=20,
    maxsize=hp.choice("maxsize", [30]),
    #     warmupMaxsizeBy=0.0,
    warmupMaxsizeBy=hp.uniform("warmupMaxsizeBy", 0.0, 0.5),
    #     useFrequency=True,
    useFrequency=hp.choice("useFrequency", [True, False]),
    #     optimizer_nrestarts=3,
    optimizer_nrestarts=hp.quniform("optimizer_nrestarts", 1, 10, 1),
    #     optimize_probability=1.0,
    optimize_probability=hp.uniform("optimize_probability", 0.0, 1.0),
    #     optimizer_iterations=10,
    optimizer_iterations=hp.quniform("optimizer_iterations", 1, 10, 1),
    #     tournament_selection_p=1.0,
    tournament_selection_p=hp.uniform("tournament_selection_p", 0.0, 1.0),
)

rand_between = lambda lo, hi: (np.random.rand() * (hi - lo) + lo)

init_vals = [
    dict(
        model_selection=0,  # 0 means first choice
        binary_operators=0,
        unary_operators=0,
        populations=100.0,
        niterations=0,
        ncyclesperiteration=rand_between(50, 150),
        alpha=rand_between(0.05, 0.2),
        annealing=0,
        #     fractionReplaced=0.01,
        fractionReplaced=0.01,
        #     fractionReplacedHof=0.005,
        fractionReplacedHof=0.005,
        #     npop=100,
        npop=rand_between(50, 200),
        #     parsimony=1e-4,
        parsimony=1e-4,
        #     topn=10,
        topn=10.0,
        #     weightAddNode=1,
        weightAddNode=1.0,
        #     weightInsertNode=3,
        weightInsertNode=3.0,
        #     weightDeleteNode=3,
        weightDeleteNode=3.0,
        #     weightDoNothing=1,
        weightDoNothing=1.0,
        #     weightMutateConstant=10,
        weightMutateConstant=10.0,
        #     weightMutateOperator=1,
        weightMutateOperator=1.0,
        #     weightRandomize=1,
        weightRandomize=1.0,
        #     weightSimplify=0.002,
        weightSimplify=0,  # One of these is fixed.
        # crossoverProbability=0.01
        crossoverProbability=0.01,
        #     perturbationFactor=1.0,
        perturbationFactor=1.0,
        #     maxsize=20,
        maxsize=0,
        #     warmupMaxsizeBy=0.0,
        warmupMaxsizeBy=0.0,
        #     useFrequency=True,
        useFrequency=1,
        #     optimizer_nrestarts=3,
        optimizer_nrestarts=3.0,
        #     optimize_probability=1.0,
        optimize_probability=1.0,
        #     optimizer_iterations=10,
        optimizer_iterations=10.0,
        #     tournament_selection_p=1.0,
        tournament_selection_p=rand_between(0.9, 0.999),
    )
]

################################################################################


def merge_trials(trials1, trials2_slice):
    """Merge two hyperopt trials objects

    :trials1: The primary trials object
    :trials2_slice: A slice of the trials object to be merged,
        obtained with, e.g., trials2.trials[:10]
    :returns: The merged trials object

    """
    max_tid = 0
    if len(trials1.trials) > 0:
        max_tid = max([trial["tid"] for trial in trials1.trials])

    for trial in trials2_slice:
        tid = trial["tid"] + max_tid + 2
        local_hyperopt_trial = Trials().new_trial_docs(
            tids=[None], specs=[None], results=[None], miscs=[None]
        )
        local_hyperopt_trial[0] = trial
        local_hyperopt_trial[0]["tid"] = tid
        local_hyperopt_trial[0]["misc"]["tid"] = tid
        for key in local_hyperopt_trial[0]["misc"]["idxs"].keys():
            local_hyperopt_trial[0]["misc"]["idxs"][key] = [tid]
        trials1.insert_trial_docs(local_hyperopt_trial)
        trials1.refresh()
    return trials1


import glob

path = TRIALS_FOLDER + "/*.pkl"
n_prior_trials = len(list(glob.glob(path)))

loaded_fnames = []
trials = generate_trials_to_calculate(init_vals)
i = 0
n = NUMBER_TRIALS_PER_RUN

# Run new hyperparameter trials until killed
while True:
    np.random.seed()

    # Load up all runs:

    if i > 0:
        for fname in glob.glob(path):
            if fname in loaded_fnames:
                continue

            trials_obj = pkl.load(open(fname, "rb"))
            n_trials = trials_obj["n"]
            trials_obj = trials_obj["trials"]
            if len(loaded_fnames) == 0:
                trials = trials_obj
            else:
                print("Merging trials")
                trials = merge_trials(trials, trials_obj.trials[-n_trials:])

            loaded_fnames.append(fname)

        print("Loaded trials", len(loaded_fnames))
        if len(loaded_fnames) == 0:
            trials = Trials()

        try:
            best = fmin(
                run_trial,
                space=space,
                algo=tpe.suggest,
                max_evals=n + len(trials.trials),
                trials=trials,
                verbose=1,
                rstate=np.random.RandomState(np.random.randint(1, 10**6)),
            )
        except hyperopt.exceptions.AllTrialsFailed:
            continue
    else:
        best = fmin(
            run_trial,
            space=space,
            algo=tpe.suggest,
            max_evals=1,
            trials=trials,
            points_to_evaluate=init_vals,
        )

    print("current best", best)
    hyperopt_trial = Trials()

    # Merge with empty trials dataset:
    if i == 0:
        save_trials = merge_trials(hyperopt_trial, trials.trials)
    else:
        save_trials = merge_trials(hyperopt_trial, trials.trials[-n:])

    new_fname = TRIALS_FOLDER + "/" + str(np.random.randint(0, sys.maxsize)) + ".pkl"
    pkl.dump({"trials": save_trials, "n": n}, open(new_fname, "wb"))
    loaded_fnames.append(new_fname)

    i += 1