Spaces:
Running
Running
File size: 6,786 Bytes
222fbf0 13219e6 460af25 13219e6 edbcfa6 71ed397 c6a43c4 46fdaa6 73042d9 46fdaa6 73042d9 deeb73e f072863 13219e6 73042d9 f072863 efb57c1 f072863 fadaa8d f072863 73042d9 f072863 73042d9 13219e6 a9e19e6 13219e6 d39a013 deeb73e 13219e6 88a78a4 13219e6 88a78a4 c6a43c4 13219e6 c6a43c4 88a78a4 dd65136 f072863 dd65136 46fdaa6 dd65136 46fdaa6 dd65136 46fdaa6 c353ada 46fdaa6 dd65136 46fdaa6 dd65136 46fdaa6 dd65136 46fdaa6 dd65136 edbcfa6 f072863 edbcfa6 dd65136 46fdaa6 222fbf0 f072863 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import gradio as gr
import numpy as np
import pandas as pd
import pysr
import tempfile
from typing import Optional
empty_df = pd.DataFrame(
{
"equation": [],
"loss": [],
"complexity": [],
}
)
test_equations = [
"sin(x) + cos(2*x) + tan(x/3)",
]
def generate_data(s: str, num_points: int, noise_level: float):
x = np.linspace(0, 10, num_points)
for (k, v) in {
"sin": "np.sin",
"cos": "np.cos",
"exp": "np.exp",
"log": "np.log",
"tan": "np.tan",
"^": "**",
}.items():
s = s.replace(k, v)
y = eval(s)
noise = np.random.normal(0, noise_level, y.shape)
y_noisy = y + noise
return pd.DataFrame({"x": x}), y_noisy
def greet(
file_obj: Optional[tempfile._TemporaryFileWrapper],
test_equation: str,
num_points: int,
noise_level: float,
niterations: int,
maxsize: int,
binary_operators: list,
unary_operators: list,
force_run: bool,
):
if file_obj is not None:
if len(binary_operators) == 0 and len(unary_operators) == 0:
return (
empty_df,
"Please select at least one operator!",
)
# Look at some statistics of the file:
df = pd.read_csv(file_obj)
if len(df) == 0:
return (
empty_df,
"The file is empty!",
)
if len(df.columns) == 1:
return (
empty_df,
"The file has only one column!",
)
if len(df) > 10_000 and not force_run:
return (
empty_df,
"You have uploaded a file with more than 10,000 rows. "
"This will take very long to run. "
"Please upload a subsample of the data, "
"or check the box 'Ignore Warnings'.",
)
col_to_fit = df.columns[-1]
y = np.array(df[col_to_fit])
X = df.drop([col_to_fit], axis=1)
else:
X, y = generate_data(test_equation, num_points, noise_level)
model = pysr.PySRRegressor(
bumper=True,
maxsize=maxsize,
niterations=niterations,
binary_operators=binary_operators,
unary_operators=unary_operators,
timeout_in_seconds=1000,
)
model.fit(X, y)
df = model.equations_[["equation", "loss", "complexity"]]
# Convert all columns to string type:
df = df.astype(str)
msg = (
"Success!\n"
f"You may run the model locally (faster) with "
f"the following parameters:"
+ f"""
model = PySRRegressor(
niterations={niterations},
binary_operators={str(binary_operators)},
unary_operators={str(unary_operators)},
maxsize={maxsize},
)
model.fit(X, y)"""
)
df.to_csv("pysr_output.csv", index=False)
return df, msg
def _data_layout():
with gr.Tab("Example Data"):
# Plot of the example data:
example_plot = gr.ScatterPlot(
x="x",
y="y",
tooltip=["x", "y"],
x_lim=[0, 10],
y_lim=[-5, 5],
width=350,
height=300,
)
test_equation = gr.Radio(
test_equations, value=test_equations[0], label="Test Equation"
)
num_points = gr.Slider(
minimum=10,
maximum=1000,
value=100,
label="Number of Data Points",
step=1,
)
noise_level = gr.Slider(minimum=0, maximum=1, value=0.1, label="Noise Level")
with gr.Tab("Upload Data"):
file_input = gr.File(label="Upload a CSV File")
gr.Markdown(
"Upload a CSV file with the data to fit. The last column will be used as the target variable."
)
return dict(
file_input=file_input,
test_equation=test_equation,
num_points=num_points,
noise_level=noise_level,
example_plot=example_plot,
)
def _settings_layout():
binary_operators = gr.CheckboxGroup(
choices=["+", "-", "*", "/", "^"],
label="Binary Operators",
value=["+", "-", "*", "/"],
)
unary_operators = gr.CheckboxGroup(
choices=[
"sin",
"cos",
"exp",
"log",
"square",
"cube",
"sqrt",
"abs",
"tan",
],
label="Unary Operators",
value=[],
)
niterations = gr.Slider(
minimum=1,
maximum=1000,
value=40,
label="Number of Iterations",
step=1,
)
maxsize = gr.Slider(
minimum=7,
maximum=35,
value=20,
label="Maximum Complexity",
step=1,
)
force_run = gr.Checkbox(
value=False,
label="Ignore Warnings",
)
return dict(
binary_operators=binary_operators,
unary_operators=unary_operators,
niterations=niterations,
maxsize=maxsize,
force_run=force_run,
)
def main():
blocks = {}
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
with gr.Row():
blocks = {**blocks, **_data_layout()}
with gr.Row():
blocks = {**blocks, **_settings_layout()}
with gr.Column():
blocks["df"] = gr.Dataframe(
headers=["Equation", "Loss", "Complexity"],
datatype=["str", "number", "number"],
)
blocks["run"] = gr.Button()
blocks["error_log"] = gr.Textbox(label="Error Log")
blocks["run"].click(
greet,
inputs=[
blocks[k]
for k in [
"file_input",
"test_equation",
"num_points",
"noise_level",
"niterations",
"maxsize",
"binary_operators",
"unary_operators",
"force_run",
]
],
outputs=[blocks["df"], blocks["error_log"]],
)
# Any update to the equation choice will trigger a replot:
eqn_components = [
blocks["test_equation"],
blocks["num_points"],
blocks["noise_level"],
]
for eqn_component in eqn_components:
eqn_component.change(replot, eqn_components, blocks["example_plot"])
demo.launch()
def replot(test_equation, num_points, noise_level):
X, y = generate_data(test_equation, num_points, noise_level)
df = pd.DataFrame({"x": X["x"], "y": y})
return df
if __name__ == "__main__":
main()
|