Spaces:
Sleeping
Sleeping
File size: 3,573 Bytes
9c31a35 3d7c303 9bfcbfa dca02e2 3d7c303 7d4300a 9c31a35 51a6b05 9c31a35 7d4300a 9c31a35 51a6b05 9c31a35 7d4300a 9c31a35 7d4300a 9bfcbfa b07eb2d 7d4300a dca02e2 7d4300a 9bfcbfa 7d4300a 9bfcbfa dca02e2 5e0dd71 7d4300a 5e0dd71 dca02e2 9bfcbfa dca02e2 9bfcbfa 7d4300a 9bfcbfa 962c25c 932dcf5 962c25c d4d95e5 c3a1736 d4d95e5 dca02e2 5e0dd71 d4d95e5 5e0dd71 dca02e2 c3a1736 d398bf9 c3a1736 d4d95e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import unittest
import numpy as np
import pandas as pd
from pysr import sympy2torch, PySRRegressor
import torch
import sympy
class TestTorch(unittest.TestCase):
def setUp(self):
np.random.seed(0)
def test_sympy2torch(self):
x, y, z = sympy.symbols("x y z")
cosx = 1.0 * sympy.cos(x) + y
X = torch.tensor(np.random.randn(1000, 3))
true = 1.0 * torch.cos(X[:, 0]) + X[:, 1]
torch_module = sympy2torch(cosx, [x, y, z])
self.assertTrue(
np.all(np.isclose(torch_module(X).detach().numpy(), true.detach().numpy()))
)
def test_pipeline(self):
X = np.random.randn(100, 10)
equations = pd.DataFrame(
{
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
"MSE": [1.0, 0.1, 1e-5],
"Complexity": [1, 2, 3],
}
)
equations["Complexity MSE Equation".split(" ")].to_csv(
"equation_file.csv.bkup", sep="|"
)
model = PySRRegressor(
model_selection="accuracy",
equation_file="equation_file.csv",
variable_names="x1 x2 x3".split(" "),
extra_sympy_mappings={},
output_torch_format=True,
)
model.selection = [1, 2, 3]
model.n_features = 2 # TODO: Why is this 2 and not 3?
model.using_pandas = False
model.refresh()
tformat = model.pytorch()
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
np.testing.assert_almost_equal(
tformat(torch.tensor(X)).detach().numpy(),
np.square(np.cos(X[:, 1])), # Selection 1st feature
decimal=4,
)
def test_mod_mapping(self):
x, y, z = sympy.symbols("x y z")
expression = x**2 + sympy.atanh(sympy.Mod(y + 1, 2) - 1) * 3.2 * z
module = sympy2torch(expression, [x, y, z])
X = torch.rand(100, 3).float() * 10
true_out = (
X[:, 0] ** 2 + torch.atanh(torch.fmod(X[:, 1] + 1, 2) - 1) * 3.2 * X[:, 2]
)
torch_out = module(X)
np.testing.assert_array_almost_equal(
true_out.detach(), torch_out.detach(), decimal=4
)
def test_custom_operator(self):
X = np.random.randn(100, 3)
equations = pd.DataFrame(
{
"Equation": ["1.0", "mycustomoperator(x1)"],
"MSE": [1.0, 0.1],
"Complexity": [1, 2],
}
)
equations["Complexity MSE Equation".split(" ")].to_csv(
"equation_file_custom_operator.csv.bkup", sep="|"
)
model = PySRRegressor(
model_selection="accuracy",
equation_file="equation_file_custom_operator.csv",
variable_names="x1 x2 x3".split(" "),
extra_sympy_mappings={"mycustomoperator": sympy.sin},
extra_torch_mappings={"mycustomoperator": torch.sin},
output_torch_format=True,
)
model.selection = [0, 1, 2]
model.n_features = 3
model.using_pandas = False
model.refresh()
self.assertEqual(str(model.sympy()), "sin(x1)")
# Will automatically use the set global state from get_hof.
tformat = model.pytorch()
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=sin(x1))")
np.testing.assert_almost_equal(
tformat(torch.tensor(X)).detach().numpy(),
np.sin(X[:, 0]), # Selection 1st feature
decimal=4,
)
|