Spaces:
Running
Running
File size: 8,477 Bytes
2f38c9c eae8f9c bed9614 af14165 05cf610 6a4fa2c 1adfa85 bed9614 7d4300a 2f38c9c 7d4300a 2f38c9c af14165 10ff16a 8e088d6 6146f6b af14165 6146f6b e0e2933 7d4300a af14165 7d4300a af14165 e0e2933 7d4300a af14165 2f38c9c af14165 ddb4d52 d85c1a5 7d4300a 6a4fa2c 5af6354 6a4fa2c af14165 7d4300a 4c67c21 d85c1a5 7d4300a af14165 6a4fa2c af14165 7d4300a 6a4fa2c af14165 7d4300a 6a4fa2c aa16a1e a232b56 58834e8 a232b56 0020398 58834e8 0020398 7d4300a e274713 faa83d3 8cfda07 aa16a1e 32c64f7 aa16a1e 0fba777 5750d1a 00122b5 af14165 ffd9cd1 5750d1a af14165 5750d1a ffd9cd1 af14165 ffd9cd1 561e614 ffd9cd1 af14165 45d2b5f 1662e82 ffd9cd1 45d2b5f ffd9cd1 1adfa85 7d4300a ec8124e 7d4300a 1adfa85 ec8124e 7d4300a 1adfa85 e274713 7d4300a e274713 f59f827 1adfa85 f59f827 1adfa85 f59f827 1adfa85 7d4300a 1662e82 51a6b05 97e6589 51a6b05 97e6589 51a6b05 7d4300a 97e6589 7d4300a 5fac847 7d4300a 5af6354 7d4300a c96b30c ef7a292 7d4300a 97e6589 7d4300a 1662e82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import unittest
from unittest.mock import patch
import numpy as np
from pysr import PySRRegressor
from pysr.sr import run_feature_selection, _handle_feature_selection
import sympy
from sympy import lambdify
import pandas as pd
class TestPipeline(unittest.TestCase):
def setUp(self):
self.default_test_kwargs = dict(
niterations=10,
populations=4,
annealing=True,
useFrequency=False,
)
np.random.seed(0)
self.X = np.random.randn(100, 5)
def test_linear_relation(self):
y = self.X[:, 0]
model = PySRRegressor(**self.default_test_kwargs)
model.fit(self.X, y)
model.set_params(model_selection="accuracy")
print(model.equations)
self.assertLessEqual(model.get_best()["loss"], 1e-4)
def test_multiprocessing(self):
y = self.X[:, 0]
model = PySRRegressor(**self.default_test_kwargs, procs=2, multithreading=False)
model.fit(self.X, y)
print(model.equations)
self.assertLessEqual(model.equations.iloc[-1]["loss"], 1e-4)
def test_multioutput_custom_operator_quiet(self):
y = self.X[:, [0, 1]] ** 2
model = PySRRegressor(
unary_operators=["sq(x) = x^2"],
extra_sympy_mappings={"sq": lambda x: x ** 2},
binary_operators=["plus"],
verbosity=0,
**self.default_test_kwargs,
procs=0,
)
model.fit(self.X, y)
equations = model.equations
print(equations)
self.assertLessEqual(equations[0].iloc[-1]["loss"], 1e-4)
self.assertLessEqual(equations[1].iloc[-1]["loss"], 1e-4)
def test_multioutput_weighted_with_callable_temp_equation(self):
y = self.X[:, [0, 1]] ** 2
w = np.random.rand(*y.shape)
w[w < 0.5] = 0.0
w[w >= 0.5] = 1.0
# Double equation when weights are 0:
y = (2 - w) * y
# Thus, pysr needs to use the weights to find the right equation!
model = PySRRegressor(
unary_operators=["sq(x) = x^2"],
binary_operators=["plus"],
extra_sympy_mappings={"sq": lambda x: x ** 2},
**self.default_test_kwargs,
procs=0,
temp_equation_file=True,
delete_tempfiles=False,
)
model.fit(self.X, y, weights=w)
np.testing.assert_almost_equal(
model.predict(self.X)[:, 0], self.X[:, 0] ** 2, decimal=4
)
np.testing.assert_almost_equal(
model.predict(self.X)[:, 1], self.X[:, 1] ** 2, decimal=4
)
def test_empty_operators_single_input_multirun(self):
X = np.random.randn(100, 1)
y = X[:, 0] + 3.0
regressor = PySRRegressor(
model_selection="accuracy",
unary_operators=[],
binary_operators=["plus"],
**self.default_test_kwargs,
)
self.assertTrue("None" in regressor.__repr__())
regressor.fit(X, y)
self.assertTrue("None" not in regressor.__repr__())
self.assertTrue(">>>>" in regressor.__repr__())
self.assertLessEqual(regressor.equations.iloc[-1]["loss"], 1e-4)
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1)
# Test if repeated fit works:
regressor.set_params(niterations=0)
regressor.fit(X, y)
self.assertLessEqual(regressor.equations.iloc[-1]["loss"], 1e-4)
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1)
# Tweak model selection:
regressor.set_params(model_selection="best")
self.assertEqual(regressor.get_params()["model_selection"], "best")
self.assertTrue("None" not in regressor.__repr__())
self.assertTrue(">>>>" in regressor.__repr__())
# "best" model_selection should also give a decent loss:
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1)
def test_noisy(self):
np.random.seed(1)
y = self.X[:, [0, 1]] ** 2 + np.random.randn(self.X.shape[0], 1) * 0.05
model = PySRRegressor(
# Test that passing a single operator works:
unary_operators="sq(x) = x^2",
binary_operators="plus",
extra_sympy_mappings={"sq": lambda x: x ** 2},
**self.default_test_kwargs,
procs=0,
denoise=True,
)
model.fit(self.X, y)
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2)
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2)
def test_pandas_resample(self):
np.random.seed(1)
X = pd.DataFrame(
{
"T": np.random.randn(500),
"x": np.random.randn(500),
"unused_feature": np.random.randn(500),
}
)
true_fn = lambda x: np.array(x["T"] + x["x"] ** 2 + 1.323837)
y = true_fn(X)
noise = np.random.randn(500) * 0.01
y = y + noise
# Resampled array is a different order of features:
Xresampled = pd.DataFrame(
{
"unused_feature": np.random.randn(100),
"x": np.random.randn(100),
"T": np.random.randn(100),
}
)
model = PySRRegressor(
unary_operators=[],
binary_operators=["+", "*", "/", "-"],
**self.default_test_kwargs,
Xresampled=Xresampled,
denoise=True,
select_k_features=2,
)
model.fit(X, y)
self.assertNotIn("unused_feature", model.latex())
self.assertIn("T", model.latex())
self.assertIn("x", model.latex())
self.assertLessEqual(model.get_best()["loss"], 1e-1)
fn = model.get_best()["lambda_format"]
self.assertListEqual(list(sorted(fn._selection)), [0, 1])
X2 = pd.DataFrame(
{
"T": np.random.randn(100),
"unused_feature": np.random.randn(100),
"x": np.random.randn(100),
}
)
self.assertLess(np.average((fn(X2) - true_fn(X2)) ** 2), 1e-1)
self.assertLess(np.average((model.predict(X2) - true_fn(X2)) ** 2), 1e-1)
class TestBest(unittest.TestCase):
def setUp(self):
equations = pd.DataFrame(
{
"equation": ["1.0", "cos(x0)", "square(cos(x0))"],
"loss": [1.0, 0.1, 1e-5],
"complexity": [1, 2, 3],
}
)
equations["complexity loss equation".split(" ")].to_csv(
"equation_file.csv.bkup", sep="|"
)
self.model = PySRRegressor(
equation_file="equation_file.csv",
variables_names="x0 x1".split(" "),
extra_sympy_mappings={},
output_jax_format=False,
multioutput=False,
nout=1,
)
self.model.n_features = 2
self.model.refresh()
self.equations = self.model.equations
def test_best(self):
self.assertEqual(self.model.sympy(), sympy.cos(sympy.Symbol("x0")) ** 2)
def test_best_tex(self):
self.assertEqual(self.model.latex(), "\\cos^{2}{\\left(x_{0} \\right)}")
def test_best_lambda(self):
X = np.random.randn(10, 2)
y = np.cos(X[:, 0]) ** 2
for f in [self.model.predict, self.equations.iloc[-1]["lambda_format"]]:
np.testing.assert_almost_equal(f(X), y, decimal=4)
class TestFeatureSelection(unittest.TestCase):
def setUp(self):
np.random.seed(0)
def test_feature_selection(self):
X = np.random.randn(20000, 5)
y = X[:, 2] ** 2 + X[:, 3] ** 2
selected = run_feature_selection(X, y, select_k_features=2)
self.assertEqual(sorted(selected), [2, 3])
def test_feature_selection_handler(self):
X = np.random.randn(20000, 5)
y = X[:, 2] ** 2 + X[:, 3] ** 2
var_names = [f"x{i}" for i in range(5)]
selected_X, selection = _handle_feature_selection(
X,
select_k_features=2,
variable_names=var_names,
y=y,
)
self.assertTrue((2 in selection) and (3 in selection))
selected_var_names = [var_names[i] for i in selection]
self.assertEqual(set(selected_var_names), set("x2 x3".split(" ")))
np.testing.assert_array_equal(
np.sort(selected_X, axis=1), np.sort(X[:, [2, 3]], axis=1)
)
|