PySR / test /test_torch.py
MilesCranmer's picture
Order torch imports after Julia init
5fe5010
raw
history blame
5.33 kB
import unittest
import numpy as np
import pandas as pd
from pysr import sympy2torch, PySRRegressor
import sympy
from functools import partial
class TestTorch(unittest.TestCase):
def setUp(self):
np.random.seed(0)
def test_sympy2torch(self):
x, y, z = sympy.symbols("x y z")
cosx = 1.0 * sympy.cos(x) + y
import torch
X = torch.tensor(np.random.randn(1000, 3))
true = 1.0 * torch.cos(X[:, 0]) + X[:, 1]
torch_module = sympy2torch(cosx, [x, y, z])
self.assertTrue(
np.all(np.isclose(torch_module(X).detach().numpy(), true.detach().numpy()))
)
def test_pipeline_pandas(self):
X = pd.DataFrame(np.random.randn(100, 10))
equations = pd.DataFrame(
{
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
"MSE": [1.0, 0.1, 1e-5],
"Complexity": [1, 2, 3],
}
)
equations["Complexity MSE Equation".split(" ")].to_csv(
"equation_file.csv.bkup", sep="|"
)
model = PySRRegressor(
model_selection="accuracy",
equation_file="equation_file.csv",
extra_sympy_mappings={},
output_torch_format=True,
)
# Because a model hasn't been fit via the `fit` method, some
# attributes will not/cannot be set. For the purpose of
# testing, these attributes will be set manually here.
model.fit(X, y=np.ones(X.shape[0]), from_equation_file=True)
model.refresh()
tformat = model.pytorch()
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
import torch
np.testing.assert_almost_equal(
tformat(torch.tensor(X.values)).detach().numpy(),
np.square(np.cos(X.values[:, 1])), # Selection 1st feature
decimal=4,
)
def test_pipeline(self):
X = np.random.randn(100, 10)
equations = pd.DataFrame(
{
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
"MSE": [1.0, 0.1, 1e-5],
"Complexity": [1, 2, 3],
}
)
equations["Complexity MSE Equation".split(" ")].to_csv(
"equation_file.csv.bkup", sep="|"
)
model = PySRRegressor(
model_selection="accuracy",
equation_file="equation_file.csv",
extra_sympy_mappings={},
output_torch_format=True,
)
model.fit(X, y=np.ones(X.shape[0]), from_equation_file=True)
model.refresh()
tformat = model.pytorch()
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
import torch
np.testing.assert_almost_equal(
tformat(torch.tensor(X)).detach().numpy(),
np.square(np.cos(X[:, 1])), # 2nd feature
decimal=4,
)
def test_mod_mapping(self):
x, y, z = sympy.symbols("x y z")
expression = x**2 + sympy.atanh(sympy.Mod(y + 1, 2) - 1) * 3.2 * z
module = sympy2torch(expression, [x, y, z])
import torch
X = torch.rand(100, 3).float() * 10
true_out = (
X[:, 0] ** 2 + torch.atanh(torch.fmod(X[:, 1] + 1, 2) - 1) * 3.2 * X[:, 2]
)
torch_out = module(X)
np.testing.assert_array_almost_equal(
true_out.detach(), torch_out.detach(), decimal=4
)
def test_custom_operator(self):
X = np.random.randn(100, 3)
equations = pd.DataFrame(
{
"Equation": ["1.0", "mycustomoperator(x1)"],
"MSE": [1.0, 0.1],
"Complexity": [1, 2],
}
)
equations["Complexity MSE Equation".split(" ")].to_csv(
"equation_file_custom_operator.csv.bkup", sep="|"
)
model = PySRRegressor(
model_selection="accuracy",
equation_file="equation_file_custom_operator.csv",
extra_sympy_mappings={"mycustomoperator": sympy.sin},
extra_torch_mappings={"mycustomoperator": torch.sin},
output_torch_format=True,
)
model.fit(X, y=np.ones(X.shape[0]), from_equation_file=True)
model.refresh()
self.assertEqual(str(model.sympy()), "sin(x1)")
# Will automatically use the set global state from get_hof.
tformat = model.pytorch()
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=sin(x1))")
import torch
np.testing.assert_almost_equal(
tformat(torch.tensor(X)).detach().numpy(),
np.sin(X[:, 1]),
decimal=4,
)
def test_feature_selection(self):
X = pd.DataFrame({f"k{i}": np.random.randn(1000) for i in range(10, 21)})
y = X["k15"] ** 2 + np.cos(X["k20"])
model = PySRRegressor(
unary_operators=["cos"],
select_k_features=3,
early_stop_condition=1e-5,
)
model.fit(X.values, y.values)
torch_module = model.pytorch()
np_output = model.predict(X.values)
import torch
torch_output = torch_module(torch.tensor(X.values)).detach().numpy()
np.testing.assert_almost_equal(np_output, torch_output, decimal=4)