Spaces:
Running
PySR.jl
Parallelized symbolic regression built on Julia, and interfaced by Python. Uses regularized evolution, simulated annealing, and gradient-free optimization.
Symbolic regression is a very interpretable machine learning algorithm for low-dimensional problems: these tools search equation space to find algebraic relations that approximate a dataset.
One can also extend these approaches to higher-dimensional spaces by using a neural network as proxy, as explained in https://arxiv.org/abs/2006.11287, where we apply it to N-body problems. Here, one essentially uses symbolic regression to convert a neural net to an analytic equation. Thus, these tools simultaneously present an explicit and powerful way to interpret deep models.
Backstory:
Previously, we have used eureqa, which is a very efficient and user-friendly tool. However, eureqa is GUI-only, doesn't allow for user-defined operators, has no distributed capabilities, and has become proprietary (and recently been merged into an online service). Thus, the goal of this package is to have an open-source symbolic regression tool as efficient as eureqa, while also exposing a configurable python interface.
Installation
PySR uses both Julia and Python, so you need to have both installed.
Install Julia - see downloads, and
then instructions for mac
and linux.
(Don't use the conda-forge
version; it doesn't seem to work properly.)
Then, at the command line,
install the Optim
and SpecialFunctions
packages via:
julia -e 'import Pkg; Pkg.add("Optim"); Pkg.add("SpecialFunctions")'
For python, you need to have Python 3, numpy, sympy, and pandas installed.
You can install this package from PyPI with:
pip install pysr
Quickstart
import numpy as np
from pysr import pysr, best, get_hof
# Dataset
X = 2*np.random.randn(100, 5)
y = 2*np.cos(X[:, 3]) + X[:, 0]**2 - 2
# Learn equations
equations = pysr(X, y, niterations=5,
binary_operators=["plus", "mult"],
unary_operators=["cos", "exp", "sin"])
...# (you can use ctl-c to exit early)
print(best())
which gives:
x0**2 + 2.000016*cos(x3) - 1.9999845
One can also use best_tex
to get the LaTeX form,
or best_callable
to get a function you can call.
This uses a score which balances complexity and error;
however, one can see the full list of equations with:
print(get_hof())
This is a pandas table, with additional columns:
MSE
- the mean square error of the formulascore
- a metric akin to Occam's razor; you should use this to help select the "true" equation.sympy_format
- sympy equation.lambda_format
- a lambda function for that equation, that you can pass values through.