MilesCranmer commited on
Commit
e74b8ad
1 Parent(s): bfea5b8

Revert "Temporarily hide conda-forge install"

Browse files

This reverts commit b5f33d55608889507ff1e8a975c6d8a990472d40.

Files changed (1) hide show
  1. README.md +37 -18
README.md CHANGED
@@ -4,13 +4,18 @@
4
 
5
  PySR searches for symbolic expressions which optimize a particular objective.
6
 
7
- <https://github.com/MilesCranmer/PySR/assets/7593028/c8511a49-b408-488f-8f18-b1749078268f>
 
8
 
9
  # PySR: High-Performance Symbolic Regression in Python and Julia
10
 
11
- | **Docs** | **pip** | **Forums** | **Paper** | **colab demo** |
12
- |:---:|:---:|:---:|:---:|:---:|
13
- |[![Documentation](https://github.com/MilesCranmer/PySR/actions/workflows/docs.yml/badge.svg)](https://astroautomata.com/PySR/)|[![PyPI version](https://badge.fury.io/py/pysr.svg)](https://badge.fury.io/py/pysr)|[![Discussions](https://img.shields.io/badge/discussions-github-informational)](https://github.com/MilesCranmer/PySR/discussions)|[![Paper](https://img.shields.io/badge/arXiv-2305.01582-b31b1b)](https://arxiv.org/abs/2305.01582)|[![Colab](https://img.shields.io/badge/colab-notebook-yellow)](https://colab.research.google.com/github/MilesCranmer/PySR/blob/master/examples/pysr_demo.ipynb)|
 
 
 
 
14
 
15
  </div>
16
 
@@ -116,38 +121,52 @@ python interface.
116
 
117
  ## Installation
118
 
 
 
 
 
 
119
 
120
  ### pip
121
 
122
  1. [Install Julia](https://julialang.org/downloads/)
123
  - Alternatively, my personal preference is to use [juliaup](https://github.com/JuliaLang/juliaup#installation), which performs this automatically.
124
  2. Then, run:
125
-
126
  ```bash
127
  pip3 install -U pysr
128
  ```
129
-
130
  3. Finally, to install Julia dependencies:
131
-
132
  ```bash
133
  python3 -m pysr install
134
  ```
135
-
136
  > (Alternatively, from within Python, you can call `import pysr; pysr.install()`)
137
 
138
  ---
139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
  ### docker build
141
 
142
  1. Clone this repo.
143
  2. In the repo, run the build command with:
144
-
145
  ```bash
146
  docker build -t pysr .
147
  ```
148
-
149
  3. You can then start the container with an IPython execution with:
150
-
151
  ```bash
152
  docker run -it --rm pysr ipython
153
  ```
@@ -232,13 +251,13 @@ to print the learned equations:
232
 
233
  ```python
234
  PySRRegressor.equations_ = [
235
- pick score equation loss complexity
236
- 0 0.000000 4.4324794 42.354317 1
237
- 1 1.255691 (x0 * x0) 3.437307 3
238
- 2 0.011629 ((x0 * x0) + -0.28087974) 3.358285 5
239
- 3 0.897855 ((x0 * x0) + cos(x3)) 1.368308 6
240
- 4 0.857018 ((x0 * x0) + (cos(x3) * 2.4566472)) 0.246483 8
241
- 5 >>>> inf (((cos(x3) + -0.19699033) * 2.5382123) + (x0 *... 0.000000 10
242
  ]
243
  ```
244
 
 
4
 
5
  PySR searches for symbolic expressions which optimize a particular objective.
6
 
7
+ https://github.com/MilesCranmer/PySR/assets/7593028/c8511a49-b408-488f-8f18-b1749078268f
8
+
9
 
10
  # PySR: High-Performance Symbolic Regression in Python and Julia
11
 
12
+ | **Docs** | **Forums** | **Paper** | **colab demo** |
13
+ |:---:|:---:|:---:|:---:|
14
+ |[![Documentation](https://github.com/MilesCranmer/PySR/actions/workflows/docs.yml/badge.svg)](https://astroautomata.com/PySR/)|[![Discussions](https://img.shields.io/badge/discussions-github-informational)](https://github.com/MilesCranmer/PySR/discussions)|[![Paper](https://img.shields.io/badge/arXiv-2305.01582-b31b1b)](https://arxiv.org/abs/2305.01582)|[![Colab](https://img.shields.io/badge/colab-notebook-yellow)](https://colab.research.google.com/github/MilesCranmer/PySR/blob/master/examples/pysr_demo.ipynb)|
15
+
16
+ | **pip** | **conda** | **Stats** |
17
+ | :---: | :---: | :---: |
18
+ |[![PyPI version](https://badge.fury.io/py/pysr.svg)](https://badge.fury.io/py/pysr)|[![Conda Version](https://img.shields.io/conda/vn/conda-forge/pysr.svg)](https://anaconda.org/conda-forge/pysr)|<div align="center">pip: [![Downloads](https://pepy.tech/badge/pysr)](https://badge.fury.io/py/pysr)<br>conda: [![Anaconda-Server Badge](https://anaconda.org/conda-forge/pysr/badges/downloads.svg)](https://anaconda.org/conda-forge/pysr)</div>|
19
 
20
  </div>
21
 
 
121
 
122
  ## Installation
123
 
124
+ | [pip](#pip) | [conda](#conda) | [docker](#docker-build) |
125
+ |:---:|:---:|:---:|
126
+ | Everywhere (recommended) | Linux and Intel-based macOS | Everywhere (if all else fails) |
127
+
128
+ ---
129
 
130
  ### pip
131
 
132
  1. [Install Julia](https://julialang.org/downloads/)
133
  - Alternatively, my personal preference is to use [juliaup](https://github.com/JuliaLang/juliaup#installation), which performs this automatically.
134
  2. Then, run:
 
135
  ```bash
136
  pip3 install -U pysr
137
  ```
 
138
  3. Finally, to install Julia dependencies:
 
139
  ```bash
140
  python3 -m pysr install
141
  ```
 
142
  > (Alternatively, from within Python, you can call `import pysr; pysr.install()`)
143
 
144
  ---
145
 
146
+ ### conda
147
+
148
+ The PySR build in conda includes all required dependencies, so you can install it by simply running:
149
+
150
+ ```bash
151
+ conda install -c conda-forge pysr
152
+ ```
153
+
154
+ from within your target conda environment.
155
+
156
+ However, note that the conda install does not support precompilation of Julia libraries, so the
157
+ start time may be slightly slower as the JIT-compilation will be running.
158
+ (Once the compilation finishes, there will not be a performance difference though.)
159
+
160
+ ---
161
+
162
  ### docker build
163
 
164
  1. Clone this repo.
165
  2. In the repo, run the build command with:
 
166
  ```bash
167
  docker build -t pysr .
168
  ```
 
169
  3. You can then start the container with an IPython execution with:
 
170
  ```bash
171
  docker run -it --rm pysr ipython
172
  ```
 
251
 
252
  ```python
253
  PySRRegressor.equations_ = [
254
+ pick score equation loss complexity
255
+ 0 0.000000 4.4324794 42.354317 1
256
+ 1 1.255691 (x0 * x0) 3.437307 3
257
+ 2 0.011629 ((x0 * x0) + -0.28087974) 3.358285 5
258
+ 3 0.897855 ((x0 * x0) + cos(x3)) 1.368308 6
259
+ 4 0.857018 ((x0 * x0) + (cos(x3) * 2.4566472)) 0.246483 8
260
+ 5 >>>> inf (((cos(x3) + -0.19699033) * 2.5382123) + (x0 *... 0.000000 10
261
  ]
262
  ```
263