File size: 12,066 Bytes
45b110b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
663ae65
 
 
 
45b110b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df6611
 
663ae65
 
3df6611
6304c5b
45b110b
 
 
 
 
 
 
6304c5b
45b110b
6304c5b
45b110b
6304c5b
45b110b
 
 
663ae65
 
 
 
45b110b
 
269022b
3df6611
 
6304c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45b110b
6304c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
663ae65
 
 
6304c5b
 
 
 
 
 
 
 
269022b
6304c5b
269022b
 
 
 
 
6304c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269022b
 
 
 
6304c5b
 
269022b
6304c5b
3df6611
 
 
 
 
269022b
 
3df6611
6304c5b
 
 
 
 
 
 
 
 
 
 
 
45b110b
 
6304c5b
269022b
45b110b
269022b
6304c5b
 
 
269022b
6304c5b
 
 
45b110b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df6611
45b110b
 
 
 
6304c5b
 
45b110b
3df6611
 
 
 
 
 
45b110b
 
6304c5b
 
 
45b110b
 
 
 
 
 
6304c5b
45b110b
 
 
6304c5b
45b110b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import gradio as gr
import torch
import gc
from PIL import Image
import torchvision.transforms as T
import torch.nn.functional as F
from diffusers import DiffusionPipeline, LMSDiscreteScheduler

# Initialize model and configurations
# At the top level, add global variables
pipe = None
device = None
elastic_transformer = None

def init_model():
    global pipe, device
    if pipe is not None:
        return pipe, device
        
    torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
    torch_dtype = torch.float16 if torch_device == "cuda" else torch.float32
    
    pipe = DiffusionPipeline.from_pretrained(
        "CompVis/stable-diffusion-v1-4",
        torch_dtype=torch_dtype
    ).to(torch_device)
    
    # Load SD concepts
    concepts = {
        "dreams": "sd-concepts-library/dreams",
        "midjourney-style": "sd-concepts-library/midjourney-style",
        "moebius": "sd-concepts-library/moebius",
        "marc-allante": "sd-concepts-library/style-of-marc-allante",
        "wlop": "sd-concepts-library/wlop-style"
    }
    
    for concept in concepts.values():
        pipe.load_textual_inversion(concept, mean_resizing=False)
    
    device = torch_device
    return pipe, device

def init_transformers(device):
    global elastic_transformer
    if elastic_transformer is not None:
        return elastic_transformer
    elastic_transformer = T.ElasticTransform(alpha=550.0, sigma=5.0).to(device)
    return elastic_transformer

# Add after init_transformers and before generate_images
def image_loss(images, loss_type, device, elastic_transformer):
    if loss_type == 'blue':
        # Reduced target blue value from 0.9 to 0.6 for more subtle effect
        error = torch.abs(images[:,2] - 0.6).mean()
        # Apply a lower scale specifically for blue loss
        return (error * 0.3).to(device)  # Reduced scaling factor
    elif loss_type == 'elastic':
        transformed_imgs = elastic_transformer(images)
        error = torch.abs(transformed_imgs - images).mean()
        return error.to(device)
    elif loss_type == 'symmetry':
        flipped_image = torch.flip(images, [3])
        error = F.mse_loss(images, flipped_image)
        return error.to(device)
    elif loss_type == 'saturation':
        transformed_imgs = T.functional.adjust_saturation(images, saturation_factor=10)
        error = torch.abs(transformed_imgs - images).mean()
        return error.to(device)
    else:
        return torch.tensor(0.0).to(device)

# Update configuration for faster generation
height, width = 384, 384  # Reduced from 512x512 to 384x384
guidance_scale = 8  # Increased from 7.5 to 8 for better prompt adherence
num_inference_steps = 45  # Using 45 steps for better quality
loss_scale = 150

def generate_images(prompt, concept):
    global pipe, device, elastic_transformer
    if pipe is None:
        pipe, device = init_model()
    if elastic_transformer is None:
        elastic_transformer = init_transformers(device)
    
    # Create prompt text and initialize results
    prompt_text = f"{prompt} {concept}"
    all_images = []  # Changed from images to all_images
    
    # Process each loss type
    loss_functions = ['none', 'blue', 'elastic', 'symmetry', 'saturation']
    progress = gr.Progress()
    
    # Generate one random seed for all loss types
    random_seed = torch.randint(1, 10000, (1,)).item()  # Random seed between 1 and 9999
    print(f"\nUsing random seed {random_seed} for all images")
    
    for idx, loss_type in enumerate(loss_functions):
        try:
            print(f"\n[{loss_type.upper()}] Starting image generation...")
            progress(idx/len(loss_functions), f"Starting {loss_type} image generation...")
            
            # Better memory management
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
                gc.collect()
                torch.cuda.empty_cache()
            
            # Move inputs to correct device and dtype
            # Remove incorrect device movement
            # text_input = text_input.to(device)  # Remove this line
            # uncond_input = uncond_input.to(device)  # Remove this line
            # latents = latents.to(dtype=pipe.vae.dtype, device=device)  # Remove this line
            
            # Initialize scheduler and process text first
            scheduler = LMSDiscreteScheduler(
                beta_start=0.00085,
                beta_end=0.012,
                beta_schedule="scaled_linear",
                num_train_timesteps=1000
            )
            scheduler.set_timesteps(num_inference_steps)
            scheduler.timesteps = scheduler.timesteps.to(device)
            
            # Process text embeddings
            text_input = pipe.tokenizer(
                [prompt_text],
                padding='max_length',
                max_length=pipe.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt"
            )
            
            with torch.no_grad():
                text_embeddings = pipe.text_encoder(text_input.input_ids.to(device))[0]
            
            uncond_input = pipe.tokenizer(
                [""] * 1,
                padding="max_length",
                max_length=text_input.input_ids.shape[-1],
                return_tensors="pt"
            )
            
            with torch.no_grad():
                uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(device))[0]
            
            text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
            
            # Generate initial latents with random seed
            # Use the same seed for all loss types
            generator = torch.manual_seed(random_seed)
            latents = torch.randn(
                (1, pipe.unet.config.in_channels, height // 8, width // 8),
                generator=generator,
            )
            latents = latents.to(device=device, dtype=pipe.unet.dtype)
            latents = latents * scheduler.init_noise_sigma
            
            # Diffusion process
            total_steps = len(scheduler.timesteps)
            for i, t in enumerate(scheduler.timesteps):
                current_progress = (idx + (i / total_steps)) / len(loss_functions)
                progress_msg = f"[{loss_type.upper()}] Step {i+1}/{total_steps} ({(i+1)/total_steps*100:.1f}%)"
                print(progress_msg)
                progress(current_progress, progress_msg)
                
                latent_model_input = torch.cat([latents] * 2)
                sigma = scheduler.sigmas[i]
                latent_model_input = scheduler.scale_model_input(latent_model_input, t)
                
                # Move latent_model_input to correct dtype
                latent_model_input = latent_model_input.to(dtype=pipe.unet.dtype)
                
                with torch.no_grad():
                    noise_pred = pipe.unet(
                        latent_model_input,
                        t,
                        encoder_hidden_states=text_embeddings
                    )["sample"]
                
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
                
                # Apply loss every 5 steps if not 'none'
                if loss_type != 'none' and i % 5 == 0:
                    latents = latents.detach().requires_grad_()
                    latents_x0 = latents - sigma * noise_pred
                    
                    # Decode to image space for loss computation
                    with torch.set_grad_enabled(True):  # Enable gradients for loss computation
                        denoised_images = pipe.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
                        denoised_images = denoised_images.requires_grad_()  # Enable gradients for images
                        loss = image_loss(denoised_images, loss_type, device, elastic_transformer)
                        # Ensure latents_x0 requires grad
                        if not latents_x0.requires_grad:
                            latents_x0 = latents_x0.requires_grad_()
                        cond_grad = torch.autograd.grad(loss * loss_scale, latents_x0)[0]
                    
                    latents = latents.detach() - cond_grad * sigma**2

                latents = scheduler.step(noise_pred, t, latents).prev_sample
                
                # Clear CUDA cache more efficiently
                if torch.cuda.is_available() and i % 10 == 0:
                    torch.cuda.empty_cache()
            
            # Remove the nested diffusion loop and move finalization outside
            progress(idx/len(loss_functions), f"Finalizing {loss_type} image...")
            
            # Proper latent to image conversion
            latents = (1 / 0.18215) * latents
            with torch.no_grad():
                image = pipe.vae.decode(latents).sample
                
            image = (image / 2 + 0.5).clamp(0, 1)
            image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
            image = (image * 255).round().astype("uint8")
            pil_image = Image.fromarray(image[0])
            
            # Add image with its label
            all_images.append((pil_image, f"{loss_type.capitalize()} Loss"))
            
        except Exception as e:
            print(f"Error generating {loss_type} image: {e}")
            continue
    
    # At the end of the function, outside the loop
    try:
        if len(all_images) == 0:
            raise Exception("No images were generated successfully")
        print("\nAll images generated successfully!")
        return [img for img, _ in all_images]
    except Exception as e:
        print(f"Error in generate_images: {e}")
        return None

def create_interface():
    default_prompts = [
        "A realistic image of Boy with a cowboy hat in the style of",
        "A realistic image of Rabbit in a spacesuit in the style of",
        "A rugged soldier in full combat gear, standing on a battlefield at dusk, dramatic lighting, highly detailed, cinematic style in the style of"
    ]
    
    concepts = [
        "dreams",
        "midjourney-style",
        "moebius",
        "marc-allante",
        "wlop"
    ]
    
    interface = gr.Interface(
        fn=generate_images,
        inputs=[
            gr.Dropdown(choices=default_prompts, label="Select a preset prompt or type your own", allow_custom_value=True),
            gr.Dropdown(choices=concepts, label="Select SD Concept")
        ],
        outputs=gr.Gallery(
            label="Generated Images (From Left to Right: Original, Blue Channel, Elastic, Symmetry, Saturation)",
            show_label=True,
            elem_id="gallery",
            columns=5,
            rows=1,
            height="auto"
        ),
        title="Stable Diffusion using Text Inversion",
        description="""Generate images using Stable Diffusion with different style concepts. The gallery shows 5 images in this order:
        1. Left-most: Original Image (No Loss) - Base generation without modifications
        2. Second: Blue Channel Loss - Enhanced blue tones for atmospheric effects
        3. Middle: Elastic Loss - Added elastic deformation for artistic distortion
        4. Fourth: Symmetry Loss - Enforced symmetrical features
        5. Right-most: Saturation Loss - Modified color saturation for vibrant effects
        
        Note: Image generation may take several minutes. Please be patient while the images are being processed.""",
        cache_examples=False,
        max_batch_size=1,
        flagging_mode="never"
    )
    
    return interface

if __name__ == "__main__":
    interface = create_interface()
    interface.queue(max_size=5)  # Remove concurrency_count parameter
    interface.launch(
        share=True, 
        server_name="0.0.0.0",
        server_port=7860
    )