File size: 12,066 Bytes
45b110b 663ae65 45b110b 3df6611 663ae65 3df6611 6304c5b 45b110b 6304c5b 45b110b 6304c5b 45b110b 6304c5b 45b110b 663ae65 45b110b 269022b 3df6611 6304c5b 45b110b 6304c5b 663ae65 6304c5b 269022b 6304c5b 269022b 6304c5b 269022b 6304c5b 269022b 6304c5b 3df6611 269022b 3df6611 6304c5b 45b110b 6304c5b 269022b 45b110b 269022b 6304c5b 269022b 6304c5b 45b110b 3df6611 45b110b 6304c5b 45b110b 3df6611 45b110b 6304c5b 45b110b 6304c5b 45b110b 6304c5b 45b110b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import gradio as gr
import torch
import gc
from PIL import Image
import torchvision.transforms as T
import torch.nn.functional as F
from diffusers import DiffusionPipeline, LMSDiscreteScheduler
# Initialize model and configurations
# At the top level, add global variables
pipe = None
device = None
elastic_transformer = None
def init_model():
global pipe, device
if pipe is not None:
return pipe, device
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
torch_dtype = torch.float16 if torch_device == "cuda" else torch.float32
pipe = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch_dtype
).to(torch_device)
# Load SD concepts
concepts = {
"dreams": "sd-concepts-library/dreams",
"midjourney-style": "sd-concepts-library/midjourney-style",
"moebius": "sd-concepts-library/moebius",
"marc-allante": "sd-concepts-library/style-of-marc-allante",
"wlop": "sd-concepts-library/wlop-style"
}
for concept in concepts.values():
pipe.load_textual_inversion(concept, mean_resizing=False)
device = torch_device
return pipe, device
def init_transformers(device):
global elastic_transformer
if elastic_transformer is not None:
return elastic_transformer
elastic_transformer = T.ElasticTransform(alpha=550.0, sigma=5.0).to(device)
return elastic_transformer
# Add after init_transformers and before generate_images
def image_loss(images, loss_type, device, elastic_transformer):
if loss_type == 'blue':
# Reduced target blue value from 0.9 to 0.6 for more subtle effect
error = torch.abs(images[:,2] - 0.6).mean()
# Apply a lower scale specifically for blue loss
return (error * 0.3).to(device) # Reduced scaling factor
elif loss_type == 'elastic':
transformed_imgs = elastic_transformer(images)
error = torch.abs(transformed_imgs - images).mean()
return error.to(device)
elif loss_type == 'symmetry':
flipped_image = torch.flip(images, [3])
error = F.mse_loss(images, flipped_image)
return error.to(device)
elif loss_type == 'saturation':
transformed_imgs = T.functional.adjust_saturation(images, saturation_factor=10)
error = torch.abs(transformed_imgs - images).mean()
return error.to(device)
else:
return torch.tensor(0.0).to(device)
# Update configuration for faster generation
height, width = 384, 384 # Reduced from 512x512 to 384x384
guidance_scale = 8 # Increased from 7.5 to 8 for better prompt adherence
num_inference_steps = 45 # Using 45 steps for better quality
loss_scale = 150
def generate_images(prompt, concept):
global pipe, device, elastic_transformer
if pipe is None:
pipe, device = init_model()
if elastic_transformer is None:
elastic_transformer = init_transformers(device)
# Create prompt text and initialize results
prompt_text = f"{prompt} {concept}"
all_images = [] # Changed from images to all_images
# Process each loss type
loss_functions = ['none', 'blue', 'elastic', 'symmetry', 'saturation']
progress = gr.Progress()
# Generate one random seed for all loss types
random_seed = torch.randint(1, 10000, (1,)).item() # Random seed between 1 and 9999
print(f"\nUsing random seed {random_seed} for all images")
for idx, loss_type in enumerate(loss_functions):
try:
print(f"\n[{loss_type.upper()}] Starting image generation...")
progress(idx/len(loss_functions), f"Starting {loss_type} image generation...")
# Better memory management
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
torch.cuda.empty_cache()
# Move inputs to correct device and dtype
# Remove incorrect device movement
# text_input = text_input.to(device) # Remove this line
# uncond_input = uncond_input.to(device) # Remove this line
# latents = latents.to(dtype=pipe.vae.dtype, device=device) # Remove this line
# Initialize scheduler and process text first
scheduler = LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000
)
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(device)
# Process text embeddings
text_input = pipe.tokenizer(
[prompt_text],
padding='max_length',
max_length=pipe.tokenizer.model_max_length,
truncation=True,
return_tensors="pt"
)
with torch.no_grad():
text_embeddings = pipe.text_encoder(text_input.input_ids.to(device))[0]
uncond_input = pipe.tokenizer(
[""] * 1,
padding="max_length",
max_length=text_input.input_ids.shape[-1],
return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Generate initial latents with random seed
# Use the same seed for all loss types
generator = torch.manual_seed(random_seed)
latents = torch.randn(
(1, pipe.unet.config.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(device=device, dtype=pipe.unet.dtype)
latents = latents * scheduler.init_noise_sigma
# Diffusion process
total_steps = len(scheduler.timesteps)
for i, t in enumerate(scheduler.timesteps):
current_progress = (idx + (i / total_steps)) / len(loss_functions)
progress_msg = f"[{loss_type.upper()}] Step {i+1}/{total_steps} ({(i+1)/total_steps*100:.1f}%)"
print(progress_msg)
progress(current_progress, progress_msg)
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# Move latent_model_input to correct dtype
latent_model_input = latent_model_input.to(dtype=pipe.unet.dtype)
with torch.no_grad():
noise_pred = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=text_embeddings
)["sample"]
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# Apply loss every 5 steps if not 'none'
if loss_type != 'none' and i % 5 == 0:
latents = latents.detach().requires_grad_()
latents_x0 = latents - sigma * noise_pred
# Decode to image space for loss computation
with torch.set_grad_enabled(True): # Enable gradients for loss computation
denoised_images = pipe.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
denoised_images = denoised_images.requires_grad_() # Enable gradients for images
loss = image_loss(denoised_images, loss_type, device, elastic_transformer)
# Ensure latents_x0 requires grad
if not latents_x0.requires_grad:
latents_x0 = latents_x0.requires_grad_()
cond_grad = torch.autograd.grad(loss * loss_scale, latents_x0)[0]
latents = latents.detach() - cond_grad * sigma**2
latents = scheduler.step(noise_pred, t, latents).prev_sample
# Clear CUDA cache more efficiently
if torch.cuda.is_available() and i % 10 == 0:
torch.cuda.empty_cache()
# Remove the nested diffusion loop and move finalization outside
progress(idx/len(loss_functions), f"Finalizing {loss_type} image...")
# Proper latent to image conversion
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = pipe.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
image = (image * 255).round().astype("uint8")
pil_image = Image.fromarray(image[0])
# Add image with its label
all_images.append((pil_image, f"{loss_type.capitalize()} Loss"))
except Exception as e:
print(f"Error generating {loss_type} image: {e}")
continue
# At the end of the function, outside the loop
try:
if len(all_images) == 0:
raise Exception("No images were generated successfully")
print("\nAll images generated successfully!")
return [img for img, _ in all_images]
except Exception as e:
print(f"Error in generate_images: {e}")
return None
def create_interface():
default_prompts = [
"A realistic image of Boy with a cowboy hat in the style of",
"A realistic image of Rabbit in a spacesuit in the style of",
"A rugged soldier in full combat gear, standing on a battlefield at dusk, dramatic lighting, highly detailed, cinematic style in the style of"
]
concepts = [
"dreams",
"midjourney-style",
"moebius",
"marc-allante",
"wlop"
]
interface = gr.Interface(
fn=generate_images,
inputs=[
gr.Dropdown(choices=default_prompts, label="Select a preset prompt or type your own", allow_custom_value=True),
gr.Dropdown(choices=concepts, label="Select SD Concept")
],
outputs=gr.Gallery(
label="Generated Images (From Left to Right: Original, Blue Channel, Elastic, Symmetry, Saturation)",
show_label=True,
elem_id="gallery",
columns=5,
rows=1,
height="auto"
),
title="Stable Diffusion using Text Inversion",
description="""Generate images using Stable Diffusion with different style concepts. The gallery shows 5 images in this order:
1. Left-most: Original Image (No Loss) - Base generation without modifications
2. Second: Blue Channel Loss - Enhanced blue tones for atmospheric effects
3. Middle: Elastic Loss - Added elastic deformation for artistic distortion
4. Fourth: Symmetry Loss - Enforced symmetrical features
5. Right-most: Saturation Loss - Modified color saturation for vibrant effects
Note: Image generation may take several minutes. Please be patient while the images are being processed.""",
cache_examples=False,
max_batch_size=1,
flagging_mode="never"
)
return interface
if __name__ == "__main__":
interface = create_interface()
interface.queue(max_size=5) # Remove concurrency_count parameter
interface.launch(
share=True,
server_name="0.0.0.0",
server_port=7860
) |