File size: 8,608 Bytes
3749a08
 
 
 
 
 
 
 
 
 
 
 
 
a8e3d89
3749a08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8e3d89
3749a08
 
 
 
 
 
 
 
a8e3d89
 
 
 
 
 
 
 
 
 
 
3749a08
 
 
 
ee9cc58
a8e3d89
 
 
 
 
3749a08
a8e3d89
 
 
ee9cc58
a8e3d89
 
 
ee9cc58
a8e3d89
 
 
 
3749a08
a8e3d89
 
 
3749a08
a8e3d89
 
 
ee9cc58
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
import streamlit as st

# Suppress TensorFlow warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()

# Load intents and chatbot training data
with open("intents.json") as file:
    intents_data = json.load(file)

with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build the chatbot model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")

# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))

# Helper Functions
def bag_of_words(s, words):
    """Convert user input to bag-of-words vector."""
    bag = [0] * len(words)
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

def generate_chatbot_response(message, history):
    """Generate chatbot response and maintain conversation history."""
    history = history or []
    try:
        result = chatbot_model.predict([bag_of_words(message, words)])
        tag = labels[np.argmax(result)]
        response = "I'm sorry, I didn't understand that. πŸ€”"
        for intent in intents_data["intents"]:
            if intent["tag"] == tag:
                response = random.choice(intent["responses"])
                break
    except Exception as e:
        response = f"Error: {e}"
    history.append((message, response))
    return history, response

def analyze_sentiment(user_input):
    """Analyze sentiment and map to emojis."""
    inputs = tokenizer_sentiment(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
    sentiment_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
    return f"Sentiment: {sentiment_map[sentiment_class]}"

def detect_emotion(user_input):
    """Detect emotions based on input."""
    pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
    result = pipe(user_input)
    emotion = result[0]["label"].lower().strip()
    emotion_map = {
        "joy": "Joy 😊",
        "anger": "Anger 😠",
        "sadness": "Sadness 😒",
        "fear": "Fear 😨",
        "surprise": "Surprise 😲",
        "neutral": "Neutral 😐",
    }
    return emotion_map.get(emotion, "Unknown πŸ€”"), emotion

def generate_suggestions(emotion):
    """Return relevant suggestions based on detected emotions."""
    emotion_key = emotion.lower()
    suggestions = {
        "joy": [
            ["Relaxation Techniques", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"],
            ["Dealing with Stress", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
            ["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
            ["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
        ],
        "anger": [
            ["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
            ["Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"],
            ["Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
            ["Relaxation Video", "https://youtu.be/MIc299Flibs"],
        ],
        "fear": [
            ["Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"],
            ["Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
            ["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
            ["Relaxation Video", "https://youtu.be/yGKKz185M5o"],
        ],
        "sadness": [
            ["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
            ["Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
            ["Relaxation Video", "https://youtu.be/-e-4Kx5px_I"],
        ],
        "surprise": [
            ["Managing Stress", "https://www.health.harvard.edu/health-a-to-z"],
            ["Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
            ["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
        ],
    }
    
    # Format the output to include HTML anchor tags
    formatted_suggestions = [
        [title, f'<a href="{link}" target="_blank">{link}</a>'] for title, link in suggestions.get(emotion_key, [["No specific suggestions available.", "#"]])
    ]

    return formatted_suggestions

def get_health_professionals_and_map(location, query):
    """Search nearby healthcare professionals using Google Maps API."""
    try:
        if not location or not query:
            return [], ""  # Return empty list if inputs are missing

        geo_location = gmaps.geocode(location)
        if geo_location:
            lat, lng = geo_location[0]["geometry"]["location"].values()
            places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
            professionals = []
            map_ = folium.Map(location=(lat, lng), zoom_start=13)
            for place in places_result:
                # Use a list of values to append each professional
                professionals.append([place['name'], place.get('vicinity', 'No address provided')])
                folium.Marker(
                    location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]], 
                    popup=f"{place['name']}"
                ).add_to(map_)
            return professionals, map_._repr_html_()

        return [], ""  # Return empty list if no professionals found
    except Exception as e:
        return [], ""  # Return empty list on exception

# Streamlit App Layout
st.title("🌟 Well-Being Companion")

# Input fields
user_input = st.text_input("Please Enter Your Message Here")
location = st.text_input("Please Enter Your Current Location Here")
query = st.text_input("Please Enter Which Health Professional You Want To Search Nearby")

# Button to submit
if st.button("Submit"):
    chatbot_history, _ = generate_chatbot_response(user_input, [])
    sentiment_result = analyze_sentiment(user_input)
    emotion_result, cleaned_emotion = detect_emotion(user_input)
    suggestions = generate_suggestions(cleaned_emotion)
    professionals, map_html = get_health_professionals_and_map(location, query)

    # Display chatbot conversation history
    st.subheader("Chat History")
    for message, response in chatbot_history:
        st.write(f"**You:** {message}")
        st.write(f"**Bot:** {response}")

    # Display sentiment
    st.subheader("Detected Sentiment")
    st.write(sentiment_result)

    # Display emotion
    st.subheader("Detected Emotion")
    st.write(emotion_result)

    # Display suggestions
    st.subheader("Suggestions")
    for suggestion, link in suggestions:
        st.write(f"[{suggestion}]({link})")

    # Display professionals
    st.subheader("Nearby Health Professionals")
    st.write(professionals)

    # Display map
    st.subheader("Interactive Map")
    st.components.v1.html(map_html, height=500)