Spaces:
Runtime error
Runtime error
File size: 8,608 Bytes
3749a08 a8e3d89 3749a08 a8e3d89 3749a08 a8e3d89 3749a08 ee9cc58 a8e3d89 3749a08 a8e3d89 ee9cc58 a8e3d89 ee9cc58 a8e3d89 3749a08 a8e3d89 3749a08 a8e3d89 ee9cc58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import os
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
import streamlit as st
# Suppress TensorFlow warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()
# Load intents and chatbot training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the chatbot model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
# Helper Functions
def bag_of_words(s, words):
"""Convert user input to bag-of-words vector."""
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def generate_chatbot_response(message, history):
"""Generate chatbot response and maintain conversation history."""
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = "I'm sorry, I didn't understand that. π€"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {e}"
history.append((message, response))
return history, response
def analyze_sentiment(user_input):
"""Analyze sentiment and map to emojis."""
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
return f"Sentiment: {sentiment_map[sentiment_class]}"
def detect_emotion(user_input):
"""Detect emotions based on input."""
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]["label"].lower().strip()
emotion_map = {
"joy": "Joy π",
"anger": "Anger π ",
"sadness": "Sadness π’",
"fear": "Fear π¨",
"surprise": "Surprise π²",
"neutral": "Neutral π",
}
return emotion_map.get(emotion, "Unknown π€"), emotion
def generate_suggestions(emotion):
"""Return relevant suggestions based on detected emotions."""
emotion_key = emotion.lower()
suggestions = {
"joy": [
["Relaxation Techniques", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"],
["Dealing with Stress", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
],
"anger": [
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
["Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"],
["Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
["Relaxation Video", "https://youtu.be/MIc299Flibs"],
],
"fear": [
["Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"],
["Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
["Relaxation Video", "https://youtu.be/yGKKz185M5o"],
],
"sadness": [
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
["Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
["Relaxation Video", "https://youtu.be/-e-4Kx5px_I"],
],
"surprise": [
["Managing Stress", "https://www.health.harvard.edu/health-a-to-z"],
["Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
],
}
# Format the output to include HTML anchor tags
formatted_suggestions = [
[title, f'<a href="{link}" target="_blank">{link}</a>'] for title, link in suggestions.get(emotion_key, [["No specific suggestions available.", "#"]])
]
return formatted_suggestions
def get_health_professionals_and_map(location, query):
"""Search nearby healthcare professionals using Google Maps API."""
try:
if not location or not query:
return [], "" # Return empty list if inputs are missing
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
professionals = []
map_ = folium.Map(location=(lat, lng), zoom_start=13)
for place in places_result:
# Use a list of values to append each professional
professionals.append([place['name'], place.get('vicinity', 'No address provided')])
folium.Marker(
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=f"{place['name']}"
).add_to(map_)
return professionals, map_._repr_html_()
return [], "" # Return empty list if no professionals found
except Exception as e:
return [], "" # Return empty list on exception
# Streamlit App Layout
st.title("π Well-Being Companion")
# Input fields
user_input = st.text_input("Please Enter Your Message Here")
location = st.text_input("Please Enter Your Current Location Here")
query = st.text_input("Please Enter Which Health Professional You Want To Search Nearby")
# Button to submit
if st.button("Submit"):
chatbot_history, _ = generate_chatbot_response(user_input, [])
sentiment_result = analyze_sentiment(user_input)
emotion_result, cleaned_emotion = detect_emotion(user_input)
suggestions = generate_suggestions(cleaned_emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
# Display chatbot conversation history
st.subheader("Chat History")
for message, response in chatbot_history:
st.write(f"**You:** {message}")
st.write(f"**Bot:** {response}")
# Display sentiment
st.subheader("Detected Sentiment")
st.write(sentiment_result)
# Display emotion
st.subheader("Detected Emotion")
st.write(emotion_result)
# Display suggestions
st.subheader("Suggestions")
for suggestion, link in suggestions:
st.write(f"[{suggestion}]({link})")
# Display professionals
st.subheader("Nearby Health Professionals")
st.write(professionals)
# Display map
st.subheader("Interactive Map")
st.components.v1.html(map_html, height=500)
|