File size: 5,964 Bytes
51b4510
5ffb625
51b4510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d89392
51b4510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import pandas as pd
data = pd.read_csv('train1.csv')

data.head()

data.corr()

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, accuracy_score
import matplotlib.pyplot as plt
import seaborn as sns


# Split dataset into independent and dependent variables
X = data.drop('price_range', axis=1)
y = data['price_range']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

knn = KNeighborsClassifier(n_neighbors=5, metric = 'minkowski' , p=1)
knn.fit(X_train, y_train)

y_pred = knn.predict(X_test)

print("Accuracy:", accuracy_score(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred))


import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns # Import seaborn for scatterplot

# Create a new data point
new_data_point = pd.DataFrame({
    'battery_power': [1500], 
    'blue': [1], 
    'clock_speed': [2.5], 
    'dual_sim': [1], 
    'fc': [16], 
    'four_g': [1], 
    'int_memory': [32], 
    'm_dep': [0.5], 
    'mobile_wt': [150], 
    'n_cores': [8], 
    'pc': [20], 
    'px_height': [1080], 
    'px_width': [1920], 
    'ram': [4000], 
    'sc_h': [15], 
    'sc_w': [8], 
    'talk_time': [10],
    'three_g': [1],  
    'touch_screen': [1],  
    'wifi': [1]  
})

# Predict the price range for the new data point
predicted_price_range = knn.predict(new_data_point)

print("Predicted price range for the new data point:", predicted_price_range[0])

# Visualize the data (example with a scatter plot)
plt.figure(figsize=(10, 6))
sns.scatterplot(x='ram', y='battery_power', hue='price_range', data=data)
plt.title('Mobile Phone Price Range')
plt.xlabel('RAM')
plt.ylabel('Battery Power')
plt.show()

# **KMeans**



from sklearn.cluster import KMeans
from sklearn.metrics import adjusted_rand_score, confusion_matrix

kmeans = KMeans(n_clusters=4, random_state=42)  
kmeans.fit(X)

#Predict cluster assignments
cluster_labels = kmeans.labels_

#Evaluate the clustering performance by comparing clusters with actual price_range labels
# We use Adjusted Rand Index (ARI) and a confusion matrix for evaluation
ari = adjusted_rand_score(y, cluster_labels)
print(f"Adjusted Rand Index (ARI): {ari}")

conf_matrix = confusion_matrix(y, cluster_labels)

# Visualize the confusion matrix
plt.figure(figsize=(8, 6))
sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues", xticklabels=range(4), yticklabels=range(4))
plt.xlabel("Cluster Labels")
plt.ylabel("Actual Price Range")
plt.title("Confusion Matrix: K-Means Clustering vs Actual Price Range")
plt.show()

from sklearn.decomposition import PCA

pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)

plt.figure(figsize=(8, 6))
sns.scatterplot(x=X_pca[:, 0], y=X_pca[:, 1], hue=cluster_labels, palette="Set1", s=100, edgecolor="k")
plt.title("K-Means Clusters Visualization (2D PCA Projection)")
plt.xlabel("PCA Component 1")
plt.ylabel("PCA Component 2")
plt.show()

# prompt: adjusted_rand_score

from sklearn.metrics import adjusted_rand_score

# Assuming 'y' is the true labels and 'cluster_labels' are the predicted cluster assignments
ari = adjusted_rand_score(y, cluster_labels)
print(f"Adjusted Rand Index (ARI): {ari}")



# Define the prediction function
def predict_price_range(battery_power, blue, clock_speed, dual_sim, fc, four_g, int_memory, m_dep, mobile_wt, n_cores, pc, px_height, px_width, ram, sc_h, sc_w, talk_time, three_g, touch_screen, wifi):
    new_data_point = pd.DataFrame({
        'battery_power': [battery_power],
        'blue': [blue],
        'clock_speed': [clock_speed],
        'dual_sim': [dual_sim],
        'fc': [fc],
        'four_g': [four_g],
        'int_memory': [int_memory],
        'm_dep': [m_dep],
        'mobile_wt': [mobile_wt],
        'n_cores': [n_cores],
        'pc': [pc],
        'px_height': [px_height],
        'px_width': [px_width],
        'ram': [ram],
        'sc_h': [sc_h],
        'sc_w': [sc_w],
        'talk_time': [talk_time],
        'three_g': [three_g],
        'touch_screen': [touch_screen],
        'wifi': [wifi]
    })
    
    prediction = knn.predict(new_data_point)
    return f"Predicted price range: {prediction[0]}"

# Create the Gradio interface
import gradio as gr
interface = gr.Interface(
    fn=predict_price_range,
    inputs=[
        gr.Slider(minimum=0, maximum=3000, step=1, label="Battery Power"),
        gr.Checkbox(label="Bluetooth"),
        gr.Slider(minimum=0, maximum=3.0, step=0.1, label="Clock Speed (GHz)"),
        gr.Checkbox(label="Dual SIM"),
        gr.Slider(minimum=0, maximum=50, step=1, label="Front Camera (MP)"),
        gr.Checkbox(label="4G"),
        gr.Slider(minimum=0, maximum=256, step=1, label="Internal Memory (GB)"),
        gr.Slider(minimum=0, maximum=1, step=0.1, label="Mobile Depth (cm)"),
        gr.Slider(minimum=100, maximum=3000, step=1, label="Mobile Weight (g)"),
        gr.Slider(minimum=1, maximum=8, step=1, label="Number of Cores"),
        gr.Slider(minimum=0, maximum=100, step=1, label="PC"),
        gr.Slider(minimum=0, maximum=4000, step=1, label="Pixel Height"),
        gr.Slider(minimum=0, maximum=4000, step=1, label="Pixel Width"),
        gr.Slider(minimum=0, maximum=8000, step=1, label="RAM (MB)"),
        gr.Slider(minimum=0, maximum=20, step=1, label="Screen Height (cm)"),
        gr.Slider(minimum=0, maximum=20, step=1, label="Screen Width (cm)"),
        gr.Slider(minimum=0, maximum=100, step=1, label="Talk Time (hours)"),
        gr.Checkbox(label="3G"),
        gr.Checkbox(label="Touch Screen"),
        gr.Checkbox(label="WiFi")
    ],
    outputs="text",
    title="Mobile Price Range Predictor",
    description="Enter the features of a mobile phone to predict its price range."
)

if __name__ == "__main__":
    interface.launch()