Spaces:
Sleeping
Sleeping
import streamlit as st | |
from io import BytesIO | |
from PIL import Image | |
from transformers import pipeline | |
def load_age_classifier(): | |
# Load and cache the image-classification pipeline for the age classifier | |
return pipeline("image-classification", model="nateraw/vit-age-classifier") | |
def classify_age(image: Image.Image): | |
""" | |
Classify the age of a person in an image using the nateraw/vit-age-classifier model. | |
Args: | |
image (PIL.Image.Image): The image to classify. | |
Returns: | |
list: Predictions with labels and corresponding confidence scores. | |
""" | |
age_classifier = load_age_classifier() | |
return age_classifier(image) | |
def main(): | |
st.title("Age Classification with ViT Age Classifier") | |
st.write("Upload an image to predict the age category using the `nateraw/vit-age-classifier` model.") | |
# Upload an image | |
uploaded_file = st.file_uploader("Upload an Image", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
try: | |
image = Image.open(uploaded_file).convert("RGB") | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
if st.button("Classify Age"): | |
with st.spinner("Classifying..."): | |
predictions = classify_age(image) | |
st.write("### Classification Results:") | |
for pred in predictions: | |
st.write(f"**Label:** {pred['label']} | **Confidence:** {pred['score']:.2f}") | |
except Exception as e: | |
st.error(f"Error processing uploaded image: {e}") | |
if __name__ == "__main__": | |
main() | |