Spaces:
Running
Running
#!/usr/bin/env python | |
from __future__ import annotations | |
import deepdanbooru as dd | |
import gradio as gr | |
import huggingface_hub | |
import numpy as np | |
import PIL.Image | |
import tensorflow as tf | |
def load_model() -> tf.keras.Model: | |
path = huggingface_hub.hf_hub_download('public-data/DeepDanbooru', | |
'model-resnet_custom_v3.h5') | |
model = tf.keras.models.load_model(path) | |
return model | |
def load_labels() -> list[str]: | |
path = huggingface_hub.hf_hub_download('public-data/DeepDanbooru', | |
'tags.txt') | |
with open(path) as f: | |
labels = [line.strip() for line in f.readlines()] | |
return labels | |
model = load_model() | |
labels = load_labels() | |
def predict(image: PIL.Image.Image, score_threshold: float): | |
_, height, width, _ = model.input_shape | |
image = np.asarray(image) | |
image = tf.image.resize(image, | |
size=(height, width), | |
method=tf.image.ResizeMethod.AREA, | |
preserve_aspect_ratio=True) | |
image = image.numpy() | |
image = dd.image.transform_and_pad_image(image, width, height) | |
image = image / 255. | |
probs = model.predict(image[None, ...])[0] | |
probs = probs.astype(float) | |
indices = np.argsort(probs)[::-1] | |
result_all = dict() | |
result_threshold = dict() | |
result_html = '' | |
for index in indices: | |
label = labels[index] | |
prob = probs[index] | |
result_all[label] = prob | |
if prob < score_threshold: | |
break | |
result_html = result_html + '<p class="m5dd_list use"><span>' + str(label) + '</span><span>' + str(round(prob, 3)) + '</span></p>' | |
result_threshold[label] = prob | |
result_text = ', '.join(result_threshold.keys()) | |
result_text = '<div id="m5dd_result">' + str(result_text) + '</div>' | |
result_html = '<div>' + str(result_html) + '</div>' | |
return result_html, result_text | |
js = """ | |
async () => { | |
document.addEventListener('click', function(event) { | |
let tagItem = event.target.closest('.m5dd_list') | |
let resultArea = event.target.closest('#m5dd_result') | |
if (tagItem){ | |
if (tagItem.classList.contains('use')){ | |
tagItem.classList.remove('use') | |
}else{ | |
tagItem.classList.add('use') | |
} | |
document.getElementById('m5dd_result').innerText = | |
Array.from(document.querySelectorAll('.m5dd_list.use>span:nth-child(1)')) | |
.map(v=>v.innerText) | |
.join(', ') | |
}else if (resultArea){ | |
const selection = window.getSelection() | |
selection.removeAllRanges() | |
const range = document.createRange() | |
range.selectNodeContents(resultArea) | |
selection.addRange(range) | |
}else{ | |
return | |
} | |
}) | |
} | |
""" | |
with gr.Blocks(css="style.css") as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
image = gr.Image(label='Input', type='pil') | |
score_threshold = gr.Slider(label='Score threshold', | |
minimum=0, | |
maximum=1, | |
step=0.05, | |
value=0.5) | |
run_button = gr.Button('Run') | |
result_text = gr.HTML(value="<div></div>") | |
with gr.Column(scale=3): | |
result_html = gr.HTML(value="<div></div>") | |
run_button.click( | |
fn=predict, | |
inputs=[image, score_threshold], | |
outputs=[result_html, result_text], | |
api_name='predict', | |
) | |
demo.load(None,None,None,_js=js) | |
demo.queue().launch() | |