Spaces:
Sleeping
Sleeping
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelWithLMHead | |
import torch | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
else: | |
device = "cpu" | |
tokenizer = AutoTokenizer.from_pretrained("salesken/content_generation_from_phrases") | |
model = AutoModelWithLMHead.from_pretrained("salesken/content_generation_from_phrases").to(device) | |
input_query=st.text_input("Enter the Blog Title") | |
query = "<|startoftext|> " +"Create a blog about "+ input_query + " ~~" | |
input_ids = tokenizer.encode(query.lower(), return_tensors='pt').to(device) | |
sample_outputs = model.generate(input_ids, | |
do_sample=True, | |
num_beams=1, | |
max_length=4096, | |
temperature=0.9, | |
top_k = 30, | |
num_return_sequences=1) | |
r = tokenizer.decode(sample_outputs[0], skip_special_tokens=True).split('||')[0] | |
r = r.split(' ~~ ')[1] | |
st.write(r) | |