Mountchicken's picture
[Update] Inital Update
174ad5e
raw
history blame
5.95 kB
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import xml.etree.ElementTree as ET
import mmcv
import mmengine
from mmocr.utils import dump_ocr_data
def collect_files(img_dir, gt_dir):
"""Collect all images and their corresponding groundtruth files.
Args:
img_dir (str): The image directory
gt_dir (str): The groundtruth directory
Returns:
files (list): The list of tuples (img_file, groundtruth_file)
"""
assert isinstance(img_dir, str)
assert img_dir
assert isinstance(gt_dir, str)
assert gt_dir
ann_list, imgs_list = [], []
for img_file in os.listdir(img_dir):
ann_path = osp.join(gt_dir, img_file.split('.')[0] + '.xml')
if os.path.exists(ann_path):
ann_list.append(ann_path)
imgs_list.append(osp.join(img_dir, img_file))
files = list(zip(imgs_list, ann_list))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
return files
def collect_annotations(files, nproc=1):
"""Collect the annotation information.
Args:
files (list): The list of tuples (image_file, groundtruth_file)
nproc (int): The number of process to collect annotations
Returns:
images (list): The list of image information dicts
"""
assert isinstance(files, list)
assert isinstance(nproc, int)
if nproc > 1:
images = mmengine.track_parallel_progress(
load_img_info, files, nproc=nproc)
else:
images = mmengine.track_progress(load_img_info, files)
return images
def load_img_info(files):
"""Load the information of one image.
Args:
files (tuple): The tuple of (img_file, groundtruth_file)
Returns:
img_info (dict): The dict of the img and annotation information
"""
assert isinstance(files, tuple)
img_file, gt_file = files
assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
'.')[0]
# read imgs while ignoring orientations
img = mmcv.imread(img_file, 'unchanged')
try:
img_info = dict(
file_name=osp.join(osp.basename(img_file)),
height=img.shape[0],
width=img.shape[1],
segm_file=osp.join(osp.basename(gt_file)))
except AttributeError:
print(f'Skip broken img {img_file}')
return None
if osp.splitext(gt_file)[1] == '.xml':
img_info = load_xml_info(gt_file, img_info)
else:
raise NotImplementedError
return img_info
def load_xml_info(gt_file, img_info):
"""Collect the annotation information.
The annotation format is as the following:
<annotations>
...
<object>
<name>SMT</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>157</xmin>
<ymin>294</ymin>
<xmax>237</xmax>
<ymax>357</ymax>
</bndbox>
<object>
Args:
gt_file (str): The path to ground-truth
img_info (dict): The dict of the img and annotation information
Returns:
img_info (dict): The dict of the img and annotation information
"""
obj = ET.parse(gt_file)
root = obj.getroot()
anno_info = []
for object in root.iter('object'):
word = object.find('name').text
iscrowd = 1 if len(word) == 0 else 0
x1 = int(object.find('bndbox').find('xmin').text)
y1 = int(object.find('bndbox').find('ymin').text)
x2 = int(object.find('bndbox').find('xmax').text)
y2 = int(object.find('bndbox').find('ymax').text)
x = max(0, min(x1, x2))
y = max(0, min(y1, y2))
w, h = abs(x2 - x1), abs(y2 - y1)
bbox = [x1, y1, w, h]
segmentation = [x, y, x + w, y, x + w, y + h, x, y + h]
anno = dict(
iscrowd=iscrowd,
category_id=1,
bbox=bbox,
area=w * h,
segmentation=[segmentation])
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def split_train_val_list(full_list, val_ratio):
"""Split list by val_ratio.
Args:
full_list (list): List to be split
val_ratio (float): Split ratio for val set
return:
list(list, list): Train_list and val_list
"""
n_total = len(full_list)
offset = int(n_total * val_ratio)
if n_total == 0 or offset < 1:
return [], full_list
val_list = full_list[:offset]
train_list = full_list[offset:]
return [train_list, val_list]
def parse_args():
parser = argparse.ArgumentParser(
description='Generate training and val set of ILST ')
parser.add_argument('root_path', help='Root dir path of ILST')
parser.add_argument(
'--val-ratio', help='Split ratio for val set', default=0., type=float)
parser.add_argument(
'--nproc', default=1, type=int, help='Number of processes')
args = parser.parse_args()
return args
def main():
args = parse_args()
root_path = args.root_path
with mmengine.Timer(print_tmpl='It takes {}s to convert ILST annotation'):
files = collect_files(
osp.join(root_path, 'imgs'), osp.join(root_path, 'annotations'))
image_infos = collect_annotations(files, nproc=args.nproc)
if args.val_ratio:
image_infos = split_train_val_list(image_infos, args.val_ratio)
splits = ['training', 'val']
else:
image_infos = [image_infos]
splits = ['training']
for i, split in enumerate(splits):
dump_ocr_data(
list(filter(None, image_infos[i])),
osp.join(root_path, 'instances_' + split + '.json'), 'textdet')
if __name__ == '__main__':
main()