Spaces:
Sleeping
Sleeping
dictionary = dict( | |
type='Dictionary', | |
dict_file='{{ fileDirname }}/../../../dicts/english_digits_symbols.txt', | |
with_padding=True, | |
with_unknown=True, | |
same_start_end=True, | |
with_start=True, | |
with_end=True) | |
model = dict( | |
type='SATRN', | |
backbone=dict(type='ShallowCNN', input_channels=3, hidden_dim=512), | |
encoder=dict( | |
type='SATRNEncoder', | |
n_layers=12, | |
n_head=8, | |
d_k=512 // 8, | |
d_v=512 // 8, | |
d_model=512, | |
n_position=100, | |
d_inner=512 * 4, | |
dropout=0.1), | |
decoder=dict( | |
type='NRTRDecoder', | |
n_layers=6, | |
d_embedding=512, | |
n_head=8, | |
d_model=512, | |
d_inner=512 * 4, | |
d_k=512 // 8, | |
d_v=512 // 8, | |
module_loss=dict( | |
type='CEModuleLoss', flatten=True, ignore_first_char=True), | |
dictionary=dictionary, | |
max_seq_len=25, | |
postprocessor=dict(type='AttentionPostprocessor')), | |
data_preprocessor=dict( | |
type='TextRecogDataPreprocessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375])) | |
train_pipeline = [ | |
dict(type='LoadImageFromFile', ignore_empty=True, min_size=0), | |
dict(type='LoadOCRAnnotations', with_text=True), | |
dict(type='Resize', scale=(100, 32), keep_ratio=False), | |
dict( | |
type='PackTextRecogInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='Resize', scale=(100, 32), keep_ratio=False), | |
# add loading annotation after ``Resize`` because ground truth | |
# does not need to do resize data transform | |
dict(type='LoadOCRAnnotations', with_text=True), | |
dict( | |
type='PackTextRecogInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) | |
] | |
tta_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict( | |
type='TestTimeAug', | |
transforms=[ | |
[ | |
dict( | |
type='ConditionApply', | |
true_transforms=[ | |
dict( | |
type='ImgAugWrapper', | |
args=[dict(cls='Rot90', k=0, keep_size=False)]) | |
], | |
condition="results['img_shape'][1]<results['img_shape'][0]" | |
), | |
dict( | |
type='ConditionApply', | |
true_transforms=[ | |
dict( | |
type='ImgAugWrapper', | |
args=[dict(cls='Rot90', k=1, keep_size=False)]) | |
], | |
condition="results['img_shape'][1]<results['img_shape'][0]" | |
), | |
dict( | |
type='ConditionApply', | |
true_transforms=[ | |
dict( | |
type='ImgAugWrapper', | |
args=[dict(cls='Rot90', k=3, keep_size=False)]) | |
], | |
condition="results['img_shape'][1]<results['img_shape'][0]" | |
), | |
], | |
[dict(type='Resize', scale=(100, 32), keep_ratio=False)], | |
# add loading annotation after ``Resize`` because ground truth | |
# does not need to do resize data transform | |
[dict(type='LoadOCRAnnotations', with_text=True)], | |
[ | |
dict( | |
type='PackTextRecogInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', | |
'valid_ratio')) | |
] | |
]) | |
] | |