Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import math | |
import os | |
import os.path as osp | |
import cv2 | |
import mmcv | |
import mmengine | |
from PIL import Image | |
from mmocr.utils import crop_img, dump_ocr_data | |
def collect_files(img_dir, gt_dir, ratio): | |
"""Collect all images and their corresponding groundtruth files. | |
Args: | |
img_dir (str): The image directory | |
gt_dir (str): The groundtruth directory | |
ratio (float): Split ratio for val set | |
Returns: | |
files (list): The list of tuples (img_file, groundtruth_file) | |
""" | |
assert isinstance(img_dir, str) | |
assert img_dir | |
assert isinstance(gt_dir, str) | |
assert gt_dir | |
assert isinstance(ratio, float) | |
assert ratio < 1.0, 'val_ratio should be a float between 0.0 to 1.0' | |
ann_list, imgs_list = [], [] | |
for ann_file in os.listdir(gt_dir): | |
img_file = osp.join(img_dir, ann_file.replace('txt', 'jpg')) | |
# This dataset contains some images obtained from .gif, | |
# which cannot be loaded by mmcv.imread(), convert them | |
# to RGB mode. | |
try: | |
if mmcv.imread(img_file) is None: | |
print(f'Convert {img_file} to RGB mode.') | |
img = Image.open(img_file) | |
img = img.convert('RGB') | |
img.save(img_file) | |
except cv2.error: | |
print(f'Skip broken img {img_file}') | |
continue | |
ann_list.append(osp.join(gt_dir, ann_file)) | |
imgs_list.append(img_file) | |
all_files = list(zip(imgs_list, ann_list)) | |
assert len(all_files), f'No images found in {img_dir}' | |
print(f'Loaded {len(all_files)} images from {img_dir}') | |
trn_files, val_files = [], [] | |
if ratio > 0: | |
for i, file in enumerate(all_files): | |
if i % math.floor(1 / ratio): | |
trn_files.append(file) | |
else: | |
val_files.append(file) | |
else: | |
trn_files, val_files = all_files, [] | |
print(f'training #{len(trn_files)}, val #{len(val_files)}') | |
return trn_files, val_files | |
def collect_annotations(files, nproc=1): | |
"""Collect the annotation information. | |
Args: | |
files (list): The list of tuples (image_file, groundtruth_file) | |
nproc (int): The number of process to collect annotations | |
Returns: | |
images (list): The list of image information dicts | |
""" | |
assert isinstance(files, list) | |
assert isinstance(nproc, int) | |
if nproc > 1: | |
images = mmengine.track_parallel_progress( | |
load_img_info, files, nproc=nproc) | |
else: | |
images = mmengine.track_progress(load_img_info, files) | |
return images | |
def load_img_info(files): | |
"""Load the information of one image. | |
Args: | |
files (tuple): The tuple of (img_file, groundtruth_file) | |
Returns: | |
img_info (dict): The dict of the img and annotation information | |
""" | |
assert isinstance(files, tuple) | |
img_file, gt_file = files | |
assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split( | |
'.')[0] | |
# read imgs while ignoring orientations | |
img = mmcv.imread(img_file) | |
img_info = dict( | |
file_name=osp.join(osp.basename(img_file)), | |
height=img.shape[0], | |
width=img.shape[1], | |
segm_file=osp.join(osp.basename(gt_file))) | |
if osp.splitext(gt_file)[1] == '.txt': | |
img_info = load_txt_info(gt_file, img_info) | |
else: | |
raise NotImplementedError | |
return img_info | |
def load_txt_info(gt_file, img_info): | |
"""Collect the annotation information. | |
The annotation format is as the following: | |
x1,y1,x2,y2,x3,y3,x4,y4,text | |
45.45,226.83,11.87,181.79,183.84,13.1,233.79,49.95,时尚袋袋 | |
345.98,311.18,345.98,347.21,462.26,347.21,462.26,311.18,73774 | |
462.26,292.34,461.44,299.71,502.39,299.71,502.39,292.34,73/74/737 | |
Args: | |
gt_file (str): The path to ground-truth | |
img_info (dict): The dict of the img and annotation information | |
Returns: | |
img_info (dict): The dict of the img and annotation information | |
""" | |
anno_info = [] | |
with open(gt_file) as f: | |
lines = f.readlines() | |
for line in lines: | |
points = line.split(',')[0:8] | |
word = line.split(',')[8].rstrip('\n') | |
if word == '###': | |
continue | |
bbox = [math.floor(float(pt)) for pt in points] | |
anno = dict(bbox=bbox, word=word) | |
anno_info.append(anno) | |
img_info.update(anno_info=anno_info) | |
return img_info | |
def generate_ann(root_path, split, image_infos, preserve_vertical): | |
"""Generate cropped annotations and label txt file. | |
Args: | |
root_path (str): The root path of the dataset | |
split (str): The split of dataset. Namely: training or test | |
image_infos (list[dict]): A list of dicts of the img and | |
annotation information | |
preserve_vertical (bool): Whether to preserve vertical texts | |
""" | |
print('Cropping images...') | |
dst_image_root = osp.join(root_path, 'crops', split) | |
ignore_image_root = osp.join(root_path, 'ignores', split) | |
if split == 'training': | |
dst_label_file = osp.join(root_path, 'train_label.json') | |
elif split == 'val': | |
dst_label_file = osp.join(root_path, 'val_label.json') | |
mmengine.mkdir_or_exist(dst_image_root) | |
mmengine.mkdir_or_exist(ignore_image_root) | |
img_info = [] | |
for image_info in image_infos: | |
index = 1 | |
src_img_path = osp.join(root_path, 'imgs', image_info['file_name']) | |
image = mmcv.imread(src_img_path) | |
src_img_root = image_info['file_name'].split('.')[0] | |
for anno in image_info['anno_info']: | |
word = anno['word'] | |
dst_img = crop_img(image, anno['bbox'], 0, 0) | |
h, w, _ = dst_img.shape | |
dst_img_name = f'{src_img_root}_{index}.png' | |
index += 1 | |
# Skip invalid annotations | |
if min(dst_img.shape) == 0: | |
continue | |
# Skip vertical texts | |
if not preserve_vertical and h / w > 2 and split == 'training': | |
dst_img_path = osp.join(ignore_image_root, dst_img_name) | |
mmcv.imwrite(dst_img, dst_img_path) | |
continue | |
dst_img_path = osp.join(dst_image_root, dst_img_name) | |
mmcv.imwrite(dst_img, dst_img_path) | |
img_info.append({ | |
'file_name': dst_img_name, | |
'anno_info': [{ | |
'text': word | |
}] | |
}) | |
dump_ocr_data(img_info, dst_label_file, 'textrecog') | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Generate training and val set of MTWI.') | |
parser.add_argument('root_path', help='Root dir path of MTWI') | |
parser.add_argument( | |
'--val-ratio', help='Split ratio for val set', default=0.0, type=float) | |
parser.add_argument( | |
'--preserve-vertical', | |
help='Preserve samples containing vertical texts', | |
action='store_true') | |
parser.add_argument( | |
'--nproc', default=1, type=int, help='Number of process') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
root_path = args.root_path | |
ratio = args.val_ratio | |
trn_files, val_files = collect_files( | |
osp.join(root_path, 'imgs'), osp.join(root_path, 'annotations'), ratio) | |
# Train set | |
trn_infos = collect_annotations(trn_files, nproc=args.nproc) | |
with mmengine.Timer( | |
print_tmpl='It takes {}s to convert MTWI Training annotation'): | |
generate_ann(root_path, 'training', trn_infos, args.preserve_vertical) | |
# Val set | |
if len(val_files) > 0: | |
val_infos = collect_annotations(val_files, nproc=args.nproc) | |
with mmengine.Timer( | |
print_tmpl='It takes {}s to convert MTWI Val annotation'): | |
generate_ann(root_path, 'val', val_infos, args.preserve_vertical) | |
if __name__ == '__main__': | |
main() | |