Mountchicken's picture
Upload 704 files
9bf4bd7
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Dict, List, Optional, Sequence, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmocr.models.common.dictionary import Dictionary
from mmocr.registry import MODELS
from mmocr.structures import TextRecogDataSample
from .base import BaseDecoder
@MODELS.register_module()
class ParallelSARDecoder(BaseDecoder):
"""Implementation Parallel Decoder module in `SAR.
<https://arxiv.org/abs/1811.00751>`_.
Args:
dictionary (dict or :obj:`Dictionary`): The config for `Dictionary` or
the instance of `Dictionary`.
module_loss (dict, optional): Config to build module_loss. Defaults
to None.
postprocessor (dict, optional): Config to build postprocessor.
Defaults to None.
enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
Defaults to False.
dec_bi_rnn (bool): If True, use bidirectional RNN in decoder.
Defaults to False.
dec_rnn_dropout (float): Dropout of RNN layer in decoder.
Defaults to 0.0.
dec_gru (bool): If True, use GRU, else LSTM in decoder. Defaults to
False.
d_model (int): Dim of channels from backbone :math:`D_i`. Defaults
to 512.
d_enc (int): Dim of encoder RNN layer :math:`D_m`. Defaults to 512.
d_k (int): Dim of channels of attention module. Defaults to 64.
pred_dropout (float): Dropout probability of prediction layer. Defaults
to 0.0.
max_seq_len (int): Maximum sequence length for decoding. Defaults to
30.
mask (bool): If True, mask padding in feature map. Defaults to True.
pred_concat (bool): If True, concat glimpse feature from
attention with holistic feature and hidden state. Defaults to
False.
init_cfg (dict or list[dict], optional): Initialization configs.
Defaults to None.
"""
def __init__(self,
dictionary: Union[Dict, Dictionary],
module_loss: Optional[Dict] = None,
postprocessor: Optional[Dict] = None,
enc_bi_rnn: bool = False,
dec_bi_rnn: bool = False,
dec_rnn_dropout: Union[int, float] = 0.0,
dec_gru: bool = False,
d_model: int = 512,
d_enc: int = 512,
d_k: int = 64,
pred_dropout: float = 0.0,
max_seq_len: int = 30,
mask: bool = True,
pred_concat: bool = False,
init_cfg: Optional[Union[Dict, List[Dict]]] = None,
**kwargs) -> None:
super().__init__(
dictionary=dictionary,
module_loss=module_loss,
max_seq_len=max_seq_len,
postprocessor=postprocessor,
init_cfg=init_cfg)
self.num_classes = self.dictionary.num_classes
self.enc_bi_rnn = enc_bi_rnn
self.d_k = d_k
self.start_idx = self.dictionary.start_idx
self.mask = mask
self.pred_concat = pred_concat
encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
decoder_rnn_out_size = encoder_rnn_out_size * (int(dec_bi_rnn) + 1)
# 2D attention layer
self.conv1x1_1 = nn.Linear(decoder_rnn_out_size, d_k)
self.conv3x3_1 = nn.Conv2d(
d_model, d_k, kernel_size=3, stride=1, padding=1)
self.conv1x1_2 = nn.Linear(d_k, 1)
# Decoder RNN layer
kwargs = dict(
input_size=encoder_rnn_out_size,
hidden_size=encoder_rnn_out_size,
num_layers=2,
batch_first=True,
dropout=dec_rnn_dropout,
bidirectional=dec_bi_rnn)
if dec_gru:
self.rnn_decoder = nn.GRU(**kwargs)
else:
self.rnn_decoder = nn.LSTM(**kwargs)
# Decoder input embedding
self.embedding = nn.Embedding(
self.num_classes,
encoder_rnn_out_size,
padding_idx=self.dictionary.padding_idx)
# Prediction layer
self.pred_dropout = nn.Dropout(pred_dropout)
if pred_concat:
fc_in_channel = decoder_rnn_out_size + d_model + \
encoder_rnn_out_size
else:
fc_in_channel = d_model
self.prediction = nn.Linear(fc_in_channel, self.num_classes)
self.softmax = nn.Softmax(dim=-1)
def _2d_attention(self,
decoder_input: torch.Tensor,
feat: torch.Tensor,
holistic_feat: torch.Tensor,
valid_ratios: Optional[Sequence[float]] = None
) -> torch.Tensor:
"""2D attention layer.
Args:
decoder_input (torch.Tensor): Input of decoder RNN.
feat (torch.Tensor): Feature map of encoder.
holistic_feat (torch.Tensor): Feature map of holistic encoder.
valid_ratios (Sequence[float]): Valid ratios of attention.
Defaults to None.
Returns:
torch.Tensor: Output of 2D attention layer.
"""
y = self.rnn_decoder(decoder_input)[0]
# y: bsz * (seq_len + 1) * hidden_size
attn_query = self.conv1x1_1(y) # bsz * (seq_len + 1) * attn_size
bsz, seq_len, attn_size = attn_query.size()
attn_query = attn_query.view(bsz, seq_len, attn_size, 1, 1)
attn_key = self.conv3x3_1(feat)
# bsz * attn_size * h * w
attn_key = attn_key.unsqueeze(1)
# bsz * 1 * attn_size * h * w
attn_weight = torch.tanh(torch.add(attn_key, attn_query, alpha=1))
# bsz * (seq_len + 1) * attn_size * h * w
attn_weight = attn_weight.permute(0, 1, 3, 4, 2).contiguous()
# bsz * (seq_len + 1) * h * w * attn_size
attn_weight = self.conv1x1_2(attn_weight)
# bsz * (seq_len + 1) * h * w * 1
bsz, T, h, w, c = attn_weight.size()
assert c == 1
if valid_ratios is not None:
# cal mask of attention weight
attn_mask = torch.zeros_like(attn_weight)
for i, valid_ratio in enumerate(valid_ratios):
valid_width = min(w, math.ceil(w * valid_ratio))
attn_mask[i, :, :, valid_width:, :] = 1
attn_weight = attn_weight.masked_fill(attn_mask.bool(),
float('-inf'))
attn_weight = attn_weight.view(bsz, T, -1)
attn_weight = F.softmax(attn_weight, dim=-1)
attn_weight = attn_weight.view(bsz, T, h, w,
c).permute(0, 1, 4, 2, 3).contiguous()
attn_feat = torch.sum(
torch.mul(feat.unsqueeze(1), attn_weight), (3, 4), keepdim=False)
# bsz * (seq_len + 1) * C
# linear transformation
if self.pred_concat:
hf_c = holistic_feat.size(-1)
holistic_feat = holistic_feat.expand(bsz, seq_len, hf_c)
y = self.prediction(torch.cat((y, attn_feat, holistic_feat), 2))
else:
y = self.prediction(attn_feat)
# bsz * (seq_len + 1) * num_classes
y = self.pred_dropout(y)
return y
def forward_train(self, feat: torch.Tensor, out_enc: torch.Tensor,
data_samples: Sequence[TextRecogDataSample]
) -> torch.Tensor:
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
data_samples (list[TextRecogDataSample]): Batch of
TextRecogDataSample, containing gt_text and valid_ratio
information.
Returns:
Tensor: A raw logit tensor of shape :math:`(N, T, C)`.
"""
if data_samples is not None:
assert len(data_samples) == feat.size(0)
valid_ratios = [
img_meta.get('valid_ratio', 1.0) for img_meta in data_samples
] if self.mask else None
padded_targets = [
data_sample.gt_text.padded_indexes for data_sample in data_samples
]
padded_targets = torch.stack(padded_targets, dim=0).to(feat.device)
tgt_embedding = self.embedding(padded_targets)
# bsz * seq_len * emb_dim
out_enc = out_enc.unsqueeze(1)
# bsz * 1 * emb_dim
in_dec = torch.cat((out_enc, tgt_embedding), dim=1)
# bsz * (seq_len + 1) * C
out_dec = self._2d_attention(
in_dec, feat, out_enc, valid_ratios=valid_ratios)
# bsz * (seq_len + 1) * num_classes
return out_dec[:, 1:, :] # bsz * seq_len * num_classes
def forward_test(
self,
feat: torch.Tensor,
out_enc: torch.Tensor,
data_samples: Optional[Sequence[TextRecogDataSample]] = None
) -> torch.Tensor:
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
data_samples (list[TextRecogDataSample], optional): Batch of
TextRecogDataSample, containing valid_ratio
information. Defaults to None.
Returns:
Tensor: Character probabilities. of shape
:math:`(N, self.max_seq_len, C)` where :math:`C` is
``num_classes``.
"""
if data_samples is not None:
assert len(data_samples) == feat.size(0)
valid_ratios = None
if data_samples is not None:
valid_ratios = [
data_sample.get('valid_ratio', 1.0)
for data_sample in data_samples
] if self.mask else None
seq_len = self.max_seq_len
bsz = feat.size(0)
start_token = torch.full((bsz, ),
self.start_idx,
device=feat.device,
dtype=torch.long)
# bsz
start_token = self.embedding(start_token)
# bsz * emb_dim
start_token = start_token.unsqueeze(1).expand(-1, seq_len, -1)
# bsz * seq_len * emb_dim
out_enc = out_enc.unsqueeze(1)
# bsz * 1 * emb_dim
decoder_input = torch.cat((out_enc, start_token), dim=1)
# bsz * (seq_len + 1) * emb_dim
outputs = []
for i in range(1, seq_len + 1):
decoder_output = self._2d_attention(
decoder_input, feat, out_enc, valid_ratios=valid_ratios)
char_output = decoder_output[:, i, :] # bsz * num_classes
outputs.append(char_output)
_, max_idx = torch.max(char_output, dim=1, keepdim=False)
char_embedding = self.embedding(max_idx) # bsz * emb_dim
if i < seq_len:
decoder_input[:, i + 1, :] = char_embedding
outputs = torch.stack(outputs, 1) # bsz * seq_len * num_classes
return self.softmax(outputs)
@MODELS.register_module()
class SequentialSARDecoder(BaseDecoder):
"""Implementation Sequential Decoder module in `SAR.
<https://arxiv.org/abs/1811.00751>`_.
Args:
dictionary (dict or :obj:`Dictionary`): The config for `Dictionary` or
the instance of `Dictionary`.
module_loss (dict, optional): Config to build module_loss. Defaults
to None.
postprocessor (dict, optional): Config to build postprocessor.
Defaults to None.
enc_bi_rnn (bool): If True, use bidirectional RNN in encoder. Defaults
to False.
dec_bi_rnn (bool): If True, use bidirectional RNN in decoder. Defaults
to False.
dec_do_rnn (float): Dropout of RNN layer in decoder. Defaults to 0.
dec_gru (bool): If True, use GRU, else LSTM in decoder. Defaults to
False.
d_k (int): Dim of conv layers in attention module. Defaults to 64.
d_model (int): Dim of channels from backbone :math:`D_i`. Defaults to
512.
d_enc (int): Dim of encoder RNN layer :math:`D_m`. Defaults to 512.
pred_dropout (float): Dropout probability of prediction layer. Defaults
to 0.
max_seq_len (int): Maximum sequence length during decoding. Defaults to
40.
mask (bool): If True, mask padding in feature map. Defaults to False.
pred_concat (bool): If True, concat glimpse feature from
attention with holistic feature and hidden state. Defaults to
False.
init_cfg (dict or list[dict], optional): Initialization configs.
Defaults to None.
"""
def __init__(self,
dictionary: Optional[Union[Dict, Dictionary]] = None,
module_loss: Optional[Dict] = None,
postprocessor: Optional[Dict] = None,
enc_bi_rnn: bool = False,
dec_bi_rnn: bool = False,
dec_gru: bool = False,
d_k: int = 64,
d_model: int = 512,
d_enc: int = 512,
pred_dropout: float = 0.0,
mask: bool = True,
max_seq_len: int = 40,
pred_concat: bool = False,
init_cfg: Optional[Union[Dict, List[Dict]]] = None,
**kwargs):
super().__init__(
dictionary=dictionary,
module_loss=module_loss,
postprocessor=postprocessor,
max_seq_len=max_seq_len,
init_cfg=init_cfg)
self.num_classes = self.dictionary.num_classes
self.enc_bi_rnn = enc_bi_rnn
self.d_k = d_k
self.start_idx = self.dictionary.start_idx
self.dec_gru = dec_gru
self.mask = mask
self.pred_concat = pred_concat
encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
decoder_rnn_out_size = encoder_rnn_out_size * (int(dec_bi_rnn) + 1)
# 2D attention layer
self.conv1x1_1 = nn.Conv2d(
decoder_rnn_out_size, d_k, kernel_size=1, stride=1)
self.conv3x3_1 = nn.Conv2d(
d_model, d_k, kernel_size=3, stride=1, padding=1)
self.conv1x1_2 = nn.Conv2d(d_k, 1, kernel_size=1, stride=1)
# Decoder rnn layer
if dec_gru:
self.rnn_decoder_layer1 = nn.GRUCell(encoder_rnn_out_size,
encoder_rnn_out_size)
self.rnn_decoder_layer2 = nn.GRUCell(encoder_rnn_out_size,
encoder_rnn_out_size)
else:
self.rnn_decoder_layer1 = nn.LSTMCell(encoder_rnn_out_size,
encoder_rnn_out_size)
self.rnn_decoder_layer2 = nn.LSTMCell(encoder_rnn_out_size,
encoder_rnn_out_size)
# Decoder input embedding
self.embedding = nn.Embedding(
self.num_classes,
encoder_rnn_out_size,
padding_idx=self.dictionary.padding_idx)
# Prediction layer
self.pred_dropout = nn.Dropout(pred_dropout)
if pred_concat:
fc_in_channel = decoder_rnn_out_size + d_model + d_enc
else:
fc_in_channel = d_model
self.prediction = nn.Linear(fc_in_channel, self.num_classes)
self.softmax = nn.Softmax(dim=-1)
def _2d_attention(self,
y_prev: torch.Tensor,
feat: torch.Tensor,
holistic_feat: torch.Tensor,
hx1: torch.Tensor,
cx1: torch.Tensor,
hx2: torch.Tensor,
cx2: torch.Tensor,
valid_ratios: Optional[Sequence[float]] = None
) -> torch.Tensor:
"""2D attention layer.
Args:
y_prev (torch.Tensor): Previous decoder hidden state.
feat (torch.Tensor): Feature map.
holistic_feat (torch.Tensor): Holistic feature map.
hx1 (torch.Tensor): rnn decoder layer 1 hidden state.
cx1 (torch.Tensor): rnn decoder layer 1 cell state.
hx2 (torch.Tensor): rnn decoder layer 2 hidden state.
cx2 (torch.Tensor): rnn decoder layer 2 cell state.
valid_ratios (Optional[Sequence[float]]): Valid ratios of
attention. Defaults to None.
"""
_, _, h_feat, w_feat = feat.size()
if self.dec_gru:
hx1 = cx1 = self.rnn_decoder_layer1(y_prev, hx1)
hx2 = cx2 = self.rnn_decoder_layer2(hx1, hx2)
else:
hx1, cx1 = self.rnn_decoder_layer1(y_prev, (hx1, cx1))
hx2, cx2 = self.rnn_decoder_layer2(hx1, (hx2, cx2))
tile_hx2 = hx2.view(hx2.size(0), hx2.size(1), 1, 1)
attn_query = self.conv1x1_1(tile_hx2) # bsz * attn_size * 1 * 1
attn_query = attn_query.expand(-1, -1, h_feat, w_feat)
attn_key = self.conv3x3_1(feat)
attn_weight = torch.tanh(torch.add(attn_key, attn_query, alpha=1))
attn_weight = self.conv1x1_2(attn_weight)
bsz, c, h, w = attn_weight.size()
assert c == 1
if valid_ratios is not None:
# cal mask of attention weight
attn_mask = torch.zeros_like(attn_weight)
for i, valid_ratio in enumerate(valid_ratios):
valid_width = min(w, math.ceil(w * valid_ratio))
attn_mask[i, :, :, valid_width:] = 1
attn_weight = attn_weight.masked_fill(attn_mask.bool(),
float('-inf'))
attn_weight = F.softmax(attn_weight.view(bsz, -1), dim=-1)
attn_weight = attn_weight.view(bsz, c, h, w)
attn_feat = torch.sum(
torch.mul(feat, attn_weight), (2, 3), keepdim=False) # n * c
# linear transformation
if self.pred_concat:
y = self.prediction(torch.cat((hx2, attn_feat, holistic_feat), 1))
else:
y = self.prediction(attn_feat)
return y, hx1, hx1, hx2, hx2
def forward_train(
self,
feat: torch.Tensor,
out_enc: torch.Tensor,
data_samples: Optional[Sequence[TextRecogDataSample]] = None
) -> torch.Tensor:
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
data_samples (list[TextRecogDataSample]): Batch of
TextRecogDataSample, containing gt_text and valid_ratio
information.
Returns:
Tensor: A raw logit tensor of shape :math:`(N, T, C)`.
"""
valid_ratios = None
if data_samples is not None:
valid_ratios = [
data_sample.get('valid_ratio', 1.0)
for data_sample in data_samples
] if self.mask else None
padded_targets = [
data_sample.gt_text.padded_indexes for data_sample in data_samples
]
padded_targets = torch.stack(padded_targets, dim=0).to(feat.device)
tgt_embedding = self.embedding(padded_targets)
outputs = []
for i in range(-1, self.max_seq_len):
if i == -1:
if self.dec_gru:
hx1 = cx1 = self.rnn_decoder_layer1(out_enc)
hx2 = cx2 = self.rnn_decoder_layer2(hx1)
else:
hx1, cx1 = self.rnn_decoder_layer1(out_enc)
hx2, cx2 = self.rnn_decoder_layer2(hx1)
else:
y_prev = tgt_embedding[:, i, :]
y, hx1, cx1, hx2, cx2 = self._2d_attention(
y_prev,
feat,
out_enc,
hx1,
cx1,
hx2,
cx2,
valid_ratios=valid_ratios)
y = self.pred_dropout(y)
outputs.append(y)
outputs = torch.stack(outputs, 1)
return outputs
def forward_test(
self,
feat: torch.Tensor,
out_enc: torch.Tensor,
data_samples: Optional[Sequence[TextRecogDataSample]] = None
) -> torch.Tensor:
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
data_samples (list[TextRecogDataSample]): Batch of
TextRecogDataSample, containing valid_ratio
information.
Returns:
Tensor: Character probabilities. of shape
:math:`(N, self.max_seq_len, C)` where :math:`C` is
``num_classes``.
"""
valid_ratios = None
if data_samples is not None:
valid_ratios = [
data_sample.get('valid_ratio', 1.0)
for data_sample in data_samples
] if self.mask else None
outputs = []
start_token = torch.full((feat.size(0), ),
self.start_idx,
device=feat.device,
dtype=torch.long)
start_token = self.embedding(start_token)
for i in range(-1, self.max_seq_len):
if i == -1:
if self.dec_gru:
hx1 = cx1 = self.rnn_decoder_layer1(out_enc)
hx2 = cx2 = self.rnn_decoder_layer2(hx1)
else:
hx1, cx1 = self.rnn_decoder_layer1(out_enc)
hx2, cx2 = self.rnn_decoder_layer2(hx1)
y_prev = start_token
else:
y, hx1, cx1, hx2, cx2 = self._2d_attention(
y_prev,
feat,
out_enc,
hx1,
cx1,
hx2,
cx2,
valid_ratios=valid_ratios)
_, max_idx = torch.max(y, dim=1, keepdim=False)
char_embedding = self.embedding(max_idx)
y_prev = char_embedding
outputs.append(y)
outputs = torch.stack(outputs, 1)
return self.softmax(outputs)