DeepVoiceGuard / app.py
Mrkomiljon's picture
Create app.py
59b5f81 verified
raw
history blame
3.11 kB
import streamlit as st
import librosa
import numpy as np
import onnxruntime as ort
# Audio padding function
def pad(x, max_len=64600):
"""
Pad or trim an audio segment to a fixed length by repeating or slicing.
"""
x_len = x.shape[0]
if x_len >= max_len:
return x[:max_len] # Trim if longer
# Repeat to fill max_len
num_repeats = (max_len // x_len) + 1
padded_x = np.tile(x, (1, num_repeats))[:, :max_len][0]
return padded_x
# Preprocess audio for a single segment
def preprocess_audio_segment(segment, cut=64600):
"""
Preprocess a single audio segment: pad or trim as required.
"""
segment = pad(segment, max_len=cut)
return np.expand_dims(np.array(segment, dtype=np.float32), axis=0) # Add batch dimension
# Sliding window prediction function
def predict_with_sliding_window(audio_path, onnx_model_url, window_size=64600, step_size=64600, sample_rate=16000):
"""
Use a sliding window to predict if the audio is real or fake over the entire audio.
"""
# Load ONNX runtime session
ort_session = ort.InferenceSession(onnx_model_url)
# Load audio file
waveform, _ = librosa.load(audio_path, sr=sample_rate)
total_segments = []
total_probabilities = []
# Sliding window processing
for start in range(0, len(waveform), step_size):
end = start + window_size
segment = waveform[start:end]
# Preprocess the segment
audio_tensor = preprocess_audio_segment(segment)
# Perform inference
inputs = {ort_session.get_inputs()[0].name: audio_tensor}
outputs = ort_session.run(None, inputs)
probabilities = np.exp(outputs[0]) # Softmax probabilities
prediction = np.argmax(probabilities)
# Store the results
predicted_class = "Real" if prediction == 1 else "Fake"
total_segments.append(predicted_class)
total_probabilities.append(probabilities[0][prediction])
# Final aggregation
majority_class = max(set(total_segments), key=total_segments.count) # Majority voting
avg_probability = np.mean(total_probabilities) * 100 # Average probability in percentage
return majority_class, avg_probability
# Streamlit app
st.title("Audio Spoof Detection with ONNX Model")
st.write("Upload an audio file to detect if it is Real or Fake.")
# File uploader
uploaded_file = st.file_uploader("Upload your audio file (WAV or MP3)", type=["wav", "mp3"])
if uploaded_file is not None:
# Path to your ONNX model
onnx_model_url = "https://huggingface.co/Mrkomiljon/DeepVoiceGuard/blob/main/RawNet_model.onnx"
# Save uploaded file temporarily
with open("temp_audio_file.wav", "wb") as f:
f.write(uploaded_file.read())
# Perform prediction
with st.spinner("Processing..."):
result, avg_probability = predict_with_sliding_window("temp_audio_file.wav", onnx_model_url)
# Display results
st.success(f"Prediction: {result}")
st.info(f"Confidence: {avg_probability:.2f}%")
# Clean up temporary file
import os
os.remove("temp_audio_file.wav")