Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio_rich_textbox import RichTextbox | |
from PIL import Image | |
from surya.ocr import run_ocr | |
from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor | |
from surya.model.recognition.model import load_model as load_rec_model | |
from surya.model.recognition.processor import load_processor as load_rec_processor | |
from lang_list import TEXT_SOURCE_LANGUAGE_NAMES , LANGUAGE_NAME_TO_CODE , text_source_language_codes | |
from gradio_client import Client | |
from dotenv import load_dotenv | |
import requests | |
from io import BytesIO | |
import cohere | |
import os | |
import re | |
import pandas as pd | |
import pydub | |
from pydub import AudioSegment | |
from pydub.utils import make_chunks | |
from pathlib import Path | |
import hashlib | |
title = "# Welcome to AyaTonic" | |
description = "Learn a New Language With Aya" | |
# Load environment variables | |
load_dotenv() | |
COHERE_API_KEY = os.getenv('CO_API_KEY') | |
SEAMLESSM4T = os.getenv('SEAMLESSM4T') | |
df = pd.read_csv("lang_list.csv") | |
choices = df["name"].to_list() | |
inputlanguage = "" | |
producetext = "\n\nProduce a complete expositional blog post in {target_language} based on the above :" | |
formatinputstring = "\n\nthe above text is a learning aid. you must use rich text format to rewrite the above and add 1 . a red color tags for nouns 2. a blue color tag for verbs 3. a green color tag for adjectives and adverbs:" | |
translatetextinst = "\n\nthe above text is a learning aid. you must use markdown format to translate the above into {inputlanguage} :'" | |
# Regular expression patterns for each color | |
patterns = { | |
"red": r'<span style="color: red;">(.*?)</span>', | |
"blue": r'<span style="color: blue;">(.*?)</span>', | |
"green": r'<span style="color: green;">(.*?)</span>', | |
} | |
# Dictionaries to hold the matches | |
matches = { | |
"red": [], | |
"blue": [], | |
"green": [], | |
} | |
co = cohere.Client(COHERE_API_KEY) | |
audio_client = Client(SEAMLESSM4T) | |
def get_language_code(language_name): | |
""" | |
Extracts the first two letters of the language code based on the language name. | |
""" | |
try: | |
code = df.loc[df['name'].str.lower() == language_name.lower(), 'code'].values[0] | |
return code | |
except IndexError: | |
print(f"Language name '{language_name}' not found.") | |
return None | |
def translate_text(text, inputlanguage, target_language): | |
""" | |
Translates text. | |
""" | |
# Ensure you format the instruction string within the function body | |
instructions = translatetextinst.format(inputlanguage=inputlanguage) | |
producetext_formatted = producetext.format(target_language=target_language) | |
prompt = f"{text}{producetext_formatted}\n{instructions}" | |
response = co.generate( | |
model='c4ai-aya', | |
prompt=prompt, | |
max_tokens=2986, | |
temperature=0.6, | |
k=0, | |
stop_sequences=[], | |
return_likelihoods='NONE' | |
) | |
return response.generations[0].text | |
class LongAudioProcessor: | |
def __init__(self, audio_client, api_key=None): | |
self.client = audio_client | |
self.process_audio_to_text = process_audio_to_text | |
self.api_key = api_key | |
def process_long_audio(self, audio_path, inputlanguage, outputlanguage, chunk_length_ms=20000): | |
""" | |
Process audio files longer than 29 seconds by chunking them into smaller segments. | |
""" | |
audio = AudioSegment.from_file(audio_path) | |
chunks = make_chunks(audio, chunk_length_ms) | |
full_text = "" | |
for i, chunk in enumerate(chunks): | |
chunk_name = f"chunk{i}.wav" | |
with open(chunk_name, 'wb') as file: | |
chunk.export(file, format="wav") | |
try: | |
result = self.process_audio_to_text(chunk_name, inputlanguage=inputlanguage, outputlanguage=outputlanguage) | |
full_text += " " + result.strip() | |
except Exception as e: | |
print(f"Error processing {chunk_name}: {e}") | |
finally: | |
if os.path.exists(chunk_name): | |
os.remove(chunk_name) | |
return full_text.strip() | |
class TaggedPhraseExtractor: | |
def __init__(self, text=''): | |
self.text = text | |
self.patterns = patterns | |
def set_text(self, text): | |
"""Set the text to search within.""" | |
self.text = text | |
def add_pattern(self, color, pattern): | |
"""Add a new color and its associated pattern.""" | |
self.patterns[color] = pattern | |
def extract_phrases(self): | |
"""Extract phrases for all colors and patterns added, including the three longest phrases.""" | |
matches = {} | |
for color, pattern in self.patterns.items(): | |
found_phrases = re.findall(pattern, self.text) | |
sorted_phrases = sorted(found_phrases, key=len, reverse=True) | |
matches[color] = sorted_phrases[:3] | |
return matches | |
def print_phrases(self): | |
"""Extract phrases and print them, including the three longest phrases.""" | |
matches = self.extract_phrases() | |
for color, data in matches.items(): | |
print(f"Phrases with color {color}:") | |
for phrase in data['all_phrases']: | |
print(f"- {phrase}") | |
print(f"\nThree longest phrases for color {color}:") | |
for phrase in data['top_three_longest']: | |
print(f"- {phrase}") | |
print() | |
def process_audio_to_text(audio_path, inputlanguage="English", outputlanguage="English"): | |
""" | |
Convert audio input to text using the Gradio client. | |
""" | |
audio_client = Client(SEAMLESSM4T) | |
result = audio_client.predict( | |
audio_path, | |
inputlanguage, | |
outputlanguage, | |
api_name="/s2tt" | |
) | |
print("Audio Result: ", result) | |
return result[0] | |
def process_text_to_audio(text, translatefrom="English", translateto="English", filename_prefix="audio"): | |
""" | |
Convert text input to audio using the Gradio client. | |
Ensure the audio file is correctly saved and returned as a file path or binary data. | |
""" | |
try: | |
# Generate audio from text | |
audio_response = audio_client.predict( | |
text, | |
translatefrom, | |
translateto, | |
api_name="/t2st" | |
) | |
if "error" in audio_response: | |
raise ValueError(f"API Error: {audio_response['error']}") | |
# Assuming audio_response[0] is a URL or file path to the generated audio | |
audio_url = audio_response[0] | |
response = requests.get(audio_url) | |
audio_data = response.content # This should be binary data | |
# Generate a unique filename based on the text's hash | |
text_hash = hashlib.md5(text.encode('utf-8')).hexdigest() | |
filename = f"{filename_prefix}_{text_hash}.wav" | |
# Save the audio data to a new file | |
new_audio_file_path = save_audio_data_to_file(audio_data, filename=filename) | |
# Return the path to the saved audio file | |
return new_audio_file_path | |
except Exception as e: | |
print(f"Error processing text to audio: {e}") | |
return None | |
def save_audio_data_to_file(audio_data, directory="audio_files", filename="output_audio.wav"): | |
""" | |
Save audio data to a file and return the file path. | |
""" | |
os.makedirs(directory, exist_ok=True) | |
file_path = os.path.join(directory, filename) | |
with open(file_path, 'wb') as file: | |
file.write(audio_data) | |
return file_path | |
# Ensure the function that reads the audio file checks if the path is a file | |
def read_audio_file(file_path): | |
""" | |
Read and return the audio file content if the path is a file. | |
""" | |
if os.path.isfile(file_path): | |
with open(file_path, 'rb') as file: | |
return file.read() | |
else: | |
raise ValueError(f"Expected a file path, got a directory: {file_path}") | |
def initialize_ocr_models(): | |
""" | |
Load the detection and recognition models along with their processors. | |
""" | |
det_processor, det_model = load_det_processor(), load_det_model() | |
rec_model, rec_processor = load_rec_model(), load_rec_processor() | |
return det_processor, det_model, rec_model, rec_processor | |
class OCRProcessor: | |
def __init__(self, lang_code=["en"]): | |
self.lang_code = lang_code | |
self.det_processor, self.det_model, self.rec_model, self.rec_processor = initialize_ocr_models() | |
def process_image(self, image): | |
""" | |
Process a PIL image and return the OCR text. | |
""" | |
predictions = run_ocr([image], [self.lang_code], self.det_model, self.det_processor, self.rec_model, self.rec_processor) | |
return predictions[0] | |
def process_pdf(self, pdf_path): | |
""" | |
Process a PDF file and return the OCR text. | |
""" | |
predictions = run_ocr([pdf_path], [self.lang_code], self.det_model, self.det_processor, self.rec_model, self.rec_processor) | |
return predictions[0] | |
def process_input(image=None, file=None, audio=None, text="", translateto = "English", translatefrom = "English" ): | |
lang_code = get_language_code(translatefrom) | |
ocr_processor = OCRProcessor(lang_code) | |
final_text = text | |
print("Image :", image) | |
if image is not None: | |
ocr_prediction = ocr_processor.process_image(image) | |
for idx in range(len((list(ocr_prediction)[0][1]))): | |
final_text += " " | |
final_text += list((list(ocr_prediction)[0][1])[idx])[1][1] | |
if file is not None: | |
if file.name.lower().endswith(('.png', '.jpg', '.jpeg')): | |
pil_image = Image.open(file) | |
ocr_prediction = ocr_processor.process_image(pil_image) | |
for idx in range(len((list(ocr_prediction)[0][1]))): | |
final_text += " " | |
final_text += list((list(ocr_prediction)[0][1])[idx])[1][1] | |
elif file.name.lower().endswith('.pdf'): | |
ocr_prediction = ocr_processor.process_pdf(file.name) | |
for idx in range(len((list(ocr_prediction)[0][1]))): | |
final_text += " " | |
final_text += list((list(ocr_prediction)[0][1])[idx])[1][1] | |
else: | |
final_text += "\nUnsupported file type." | |
print("OCR Text: ", final_text) | |
if audio is not None: | |
long_audio_processor = LongAudioProcessor(audio_client) | |
audio_text = long_audio_processor.process_long_audio(audio, inputlanguage=translatefrom, outputlanguage=translateto) | |
final_text += "\n" + audio_text | |
final_text_with_producetext = final_text + producetext.format(target_language=translateto) | |
response = co.generate( | |
model='c4ai-aya', | |
prompt=final_text_with_producetext, | |
max_tokens=1024, | |
temperature=0.5 | |
) | |
# add graceful handling for errors (overflow) | |
generated_text = response.generations[0].text | |
print("Generated Text: ", generated_text) | |
generated_text_with_format = generated_text + "\n" + formatinputstring | |
response = co.generate( | |
model='command-nightly', | |
prompt=generated_text_with_format, | |
max_tokens=4000, | |
temperature=0.5 | |
) | |
processed_text = response.generations[0].text | |
audio_output = process_text_to_audio(processed_text, translateto, translateto) | |
extractor = TaggedPhraseExtractor(final_text) | |
matches = extractor.extract_phrases() | |
top_phrases = [] | |
for color, phrases in matches.items(): | |
top_phrases.extend(phrases) | |
while len(top_phrases) < 3: | |
top_phrases.append("") | |
audio_outputs = [] | |
translations = [] | |
for phrase in top_phrases: | |
if phrase: | |
translated_phrase = translate_text(phrase, translatefrom=translatefrom, translateto=translateto) | |
translations.append(translated_phrase) | |
target_audio = process_text_to_audio(phrase, translatefrom=translateto, translateto=translateto) | |
native_audio = process_text_to_audio(translated_phrase, translatefrom=translatefrom, translateto=translatefrom) | |
audio_outputs.append((target_audio, native_audio)) | |
else: | |
translations.append("") | |
audio_outputs.append(("", "")) | |
return final_text, audio_output, top_phrases, translations, audio_outputs | |
# Define the inputs and outputs for the Gradio Interface | |
inputs = [ | |
gr.Dropdown(choices=choices, label="Your Native Language"), | |
gr.Dropdown(choices=choices, label="Language To Learn"), | |
gr.Audio(sources="microphone", type="filepath", label="Mic Input"), | |
gr.Image(type="pil", label="Camera Input"), | |
gr.Textbox(lines=2, label="Text Input"), | |
gr.File(label="File Upload") | |
] | |
outputs = [ | |
RichTextbox(label="Processed Text"), | |
gr.Audio(label="Audio"), | |
gr.Textbox(label="Focus 1"), | |
gr.Textbox(label="Translated Phrases 1"), | |
gr.Audio(label="Audio Output (Native Language) 1"), | |
gr.Audio(label="Audio Output (Target Language) 1"), | |
gr.Textbox(label="Focus 2"), | |
gr.Textbox(label="Translated Phrases 2"), | |
gr.Audio(label="Audio Output (Native Language) 2"), | |
gr.Audio(label="Audio Output (Target Language) 2"), | |
gr.Textbox(label="Focus 3"), | |
gr.Textbox(label="Translated Phrases 3"), | |
gr.Audio(label="Audio Output (Native Language) 3"), | |
gr.Audio(label="Audio Output (Target Language) 3") | |
] | |
def update_outputs(inputlanguage, target_language, audio, image, text, file): | |
processed_text, audio_output_path, top_phrases, translations, audio_outputs = process_input( | |
image=image, file=file, audio=audio, text=text, | |
translateto=target_language, translatefrom=inputlanguage | |
) | |
audio_outputs_components = [(ao[0], ao[1]) for ao in audio_outputs] | |
output_tuple = (processed_text, audio_output_path) | |
for i in range(len(top_phrases)): | |
output_tuple += (top_phrases[i], translations[i]) + audio_outputs_components[i] | |
while len(output_tuple) < 14: | |
output_tuple += ("", "", "", "") | |
return output_tuple | |
def interface_func(inputlanguage, target_language, audio, image, text, file): | |
return update_outputs(inputlanguage, target_language, audio, image, text, file) | |
# Create the Gradio interface | |
iface = gr.Interface(fn=interface_func, inputs=inputs, outputs=outputs, title=title, description=description) | |
if __name__ == "__main__": | |
iface.launch() |