File size: 32,421 Bytes
58cea02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d04558f
58cea02
 
 
 
 
 
 
 
d04558f
58cea02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import time
from fuzzywuzzy import process
import random

## import global functions
from global_func.clean_player_name import clean_player_name
from global_func.load_file import load_file
from global_func.load_ss_file import load_ss_file
from global_func.find_name_mismatches import find_name_mismatches
from global_func.predict_dupes import predict_dupes
from global_func.highlight_rows import highlight_changes, highlight_changes_winners, highlight_changes_losers
from global_func.load_csv import load_csv
from global_func.find_csv_mismatches import find_csv_mismatches

freq_format = {'Finish_percentile': '{:.2%}', 'Lineup Edge': '{:.2%}', 'Win%': '{:.2%}'}
player_wrong_names_mlb = ['Enrique Hernandez']
player_right_names_mlb = ['Kike Hernandez']

tab1, tab2 = st.tabs(["Data Load", "Contest Analysis"])
with tab1:
    if st.button('Clear data', key='reset1'):
        st.session_state.clear()
    # Add file uploaders to your app
    col1, col2, col3 = st.columns(3)

    with col1:
        st.subheader("Draftkings/Fanduel CSV")
        st.info("Upload the player pricing CSV from the site you are playing on.")

        upload_csv_col, csv_template_col = st.columns([3, 1])
        with upload_csv_col:
            csv_file = st.file_uploader("Upload CSV File", type=['csv'])
            if 'csv_file' in st.session_state:
                del st.session_state['csv_file']
        with csv_template_col:

            csv_template_df = pd.DataFrame(columns=['Name', 'ID', 'Roster Position', 'Salary'])

            st.download_button(
                label="CSV Template",
                data=csv_template_df.to_csv(index=False),
                file_name="csv_template.csv",
                mime="text/csv"
            )
        st.session_state['csv_file'] = load_csv(csv_file)
        try:
            st.session_state['csv_file']['Salary'] = st.session_state['csv_file']['Salary'].astype(str).str.replace(',', '').astype(int)
        except:
            pass
            
        if csv_file:
            st.session_state['csv_file'] = st.session_state['csv_file'].drop_duplicates(subset=['Name'])
            st.success('Projections file loaded successfully!')
            st.dataframe(st.session_state['csv_file'].head(10))
    
    with col2:
        st.subheader("Portfolio File")
        st.info("Go ahead and upload a portfolio file here. Only include player columns and an optional 'Stack' column if you are playing MLB.")
        saber_toggle = st.radio("Are you uploading from SaberSim?", options=['No', 'Yes'])
        st.info("If you are uploading from SaberSim, you will need to upload a CSV file for the slate for name matching.")
        if saber_toggle == 'Yes':
            if csv_file is not None:
                portfolio_file = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
                if 'portfolio' in st.session_state:
                    del st.session_state['portfolio']
                if 'export_portfolio' in st.session_state:
                    del st.session_state['export_portfolio']

        else:
            portfolio_file = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
            if 'portfolio' in st.session_state:
                del st.session_state['portfolio']
            if 'export_portfolio' in st.session_state:
                del st.session_state['export_portfolio']

        if portfolio_file:
            if saber_toggle == 'Yes':
                st.session_state['export_portfolio'], st.session_state['portfolio'] = load_ss_file(portfolio_file, st.session_state['csv_file'])
                st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all')
                st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True)
                st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all')
                st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True)
            else:
                st.session_state['export_portfolio'], st.session_state['portfolio'] = load_file(portfolio_file)
                st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all')
                st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True)
                st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all')
                st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True)
            # Check if Stack column exists in the portfolio
            if 'Stack' in st.session_state['portfolio'].columns:
                # Create dictionary mapping index to Stack values
                stack_dict = dict(zip(st.session_state['portfolio'].index, st.session_state['portfolio']['Stack']))
                st.write(f"Found {len(stack_dict)} stack assignments")
                st.session_state['portfolio'] = st.session_state['portfolio'].drop(columns=['Stack'])
            else:
                stack_dict = None
                st.info("No Stack column found in portfolio")
            if st.session_state['portfolio'] is not None:
                st.success('Portfolio file loaded successfully!')
                st.session_state['portfolio'] = st.session_state['portfolio'].apply(lambda x: x.replace(player_wrong_names_mlb, player_right_names_mlb))
                st.dataframe(st.session_state['portfolio'].head(10))

    with col3:
        st.subheader("Projections File")
        st.info("upload a projections file that has 'player_names', 'salary', 'median', 'ownership', and 'captain ownership' (Needed for Showdown) columns. Note that the salary for showdown needs to be the FLEX salary, not the captain salary.")
        
        # Create two columns for the uploader and template button
        upload_col, template_col = st.columns([3, 1])
        
        with upload_col:
            projections_file = st.file_uploader("Upload Projections File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
            if 'projections_df' in st.session_state:
                del st.session_state['projections_df']
        
        with template_col:
            # Create empty DataFrame with required columns
            template_df = pd.DataFrame(columns=['player_names', 'position', 'team', 'salary', 'median', 'ownership', 'captain ownership'])
            # Add download button for template
            st.download_button(
                label="Template",
                data=template_df.to_csv(index=False),
                file_name="projections_template.csv",
                mime="text/csv"
            )
            
        if projections_file:
            export_projections, projections = load_file(projections_file)
            if projections is not None:
                st.success('Projections file loaded successfully!')
                projections = projections.apply(lambda x: x.replace(player_wrong_names_mlb, player_right_names_mlb))
                st.dataframe(projections.head(10))

    if portfolio_file and projections_file:
        if st.session_state['portfolio'] is not None and projections is not None:
            st.subheader("Name Matching Analysis")
            # Initialize projections_df in session state if it doesn't exist
            if 'projections_df' not in st.session_state:
                st.session_state['projections_df'] = projections.copy()
                st.session_state['projections_df']['salary'] = (st.session_state['projections_df']['salary'].astype(str).str.replace(',', '').astype(float).astype(int))
            
            # Update projections_df with any new matches
            st.session_state['projections_df'] = find_name_mismatches(st.session_state['portfolio'], st.session_state['projections_df'])
            if csv_file is not None and 'export_dict' not in st.session_state:
                    # Create a dictionary of Name to Name+ID from csv_file
                    try:
                        name_id_map = dict(zip(
                            st.session_state['csv_file']['Name'], 
                            st.session_state['csv_file']['Name + ID']
                        ))
                    except:
                        name_id_map = dict(zip(
                            st.session_state['csv_file']['Nickname'], 
                            st.session_state['csv_file']['Id']
                        ))
                    
                    # Function to find best match
                    def find_best_match(name):
                        best_match = process.extractOne(name, name_id_map.keys())
                        if best_match and best_match[1] >= 85:  # 85% match threshold
                            return name_id_map[best_match[0]]
                        return name  # Return original name if no good match found
                    
                    # Apply the matching
                    projections['upload_match'] = projections['player_names'].apply(find_best_match)
                    st.session_state['export_dict'] = dict(zip(projections['player_names'], projections['upload_match']))

with tab2:
    if st.button('Clear data', key='reset3'):
        st.session_state.clear()
    if 'portfolio' in st.session_state and 'projections_df' in st.session_state:
        col1, col2, col3 = st.columns([1, 8, 1])
        excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Win%', 'Lineup Edge']
        with col1:
            site_var = st.selectbox("Select Site", ['Draftkings', 'Fanduel'])
            sport_var = st.selectbox("Select Sport", ['NFL', 'MLB', 'NBA', 'NHL', 'MMA'])
            st.info("It currently does not matter what sport you select, it may matter in the future.")
            type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'])
            Contest_Size = st.number_input("Enter Contest Size", value=25000, min_value=1, step=1)
            strength_var = st.selectbox("Select field strength", ['Average', 'Sharp', 'Weak'])
        if site_var == 'Draftkings':
            if type_var == 'Classic':
                map_dict = {
                    'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
                    'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
                    'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
                    'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
                    'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
                    'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
                    'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
                    'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
                    'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
                }
            elif type_var == 'Showdown':
                if sport_var == 'NFL':
                    map_dict = {
                        'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
                        'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
                        'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
                        'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
                        'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
                        'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
                        'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] * 1.5)),
                        'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
                        'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
                    }
                elif sport_var != 'NFL':
                    map_dict = {
                        'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
                        'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
                        'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] / 1.5)),
                        'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
                        'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
                        'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
                        'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
                        'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
                        'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
                    }
        elif site_var == 'Fanduel':
            map_dict = {
                'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
                'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
                'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
                'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
                'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
                'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
                'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
                'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
                'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
            }
        
        if type_var == 'Classic':
            st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
            st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row), axis=1)
            st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(lambda row: sum(map_dict['own_map'].get(player, 0) for player in row), axis=1)
            if stack_dict is not None:
                st.session_state['portfolio']['Stack'] = st.session_state['portfolio'].index.map(stack_dict)
        elif type_var == 'Showdown':
            # Calculate salary (CPT uses cpt_salary_map, others use salary_map)
            st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(
                lambda row: map_dict['cpt_salary_map'].get(row.iloc[0], 0) + 
                          sum(map_dict['salary_map'].get(player, 0) for player in row.iloc[1:]),
                axis=1
            )
            
            # Calculate median (CPT uses cpt_proj_map, others use proj_map)
            st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(
                lambda row: map_dict['cpt_proj_map'].get(row.iloc[0], 0) + 
                          sum(map_dict['proj_map'].get(player, 0) for player in row.iloc[1:]),
                axis=1
            )
            
            # Calculate ownership (CPT uses cpt_own_map, others use own_map)
            st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(
                lambda row: map_dict['cpt_own_map'].get(row.iloc[0], 0) + 
                          sum(map_dict['own_map'].get(player, 0) for player in row.iloc[1:]),
                axis=1
            )
        with col3:
            with st.form(key='filter_form'):
                max_dupes = st.number_input("Max acceptable dupes?", value=1000, min_value=1, step=1)
                min_salary = st.number_input("Min acceptable salary?", value=1000, min_value=1000, step=100)
                max_salary = st.number_input("Max acceptable salary?", value=60000, min_value=1000, step=100)
                max_finish_percentile = st.number_input("Max acceptable finish percentile?", value=.50, min_value=0.005, step=.001)
                player_names = set()
                for col in st.session_state['portfolio'].columns:
                    if col not in excluded_cols:
                        player_names.update(st.session_state['portfolio'][col].unique())
                player_lock = st.multiselect("Lock players?", options=sorted(list(player_names)), default=[])
                player_remove = st.multiselect("Remove players?", options=sorted(list(player_names)), default=[])
                if stack_dict is not None:
                    stack_toggle = st.selectbox("Include specific stacks?", options=['All Stacks', 'Specific Stacks'], index=0)
                    stack_selections = st.multiselect("If Specific Stacks, Which to include?", options=sorted(list(set(stack_dict.values()))), default=[])
                    stack_remove = st.multiselect("If Specific Stacks, Which to remove?", options=sorted(list(set(stack_dict.values()))), default=[])
                
                submitted = st.form_submit_button("Submit")

        with col2:
            st.session_state['portfolio'] = predict_dupes(st.session_state['portfolio'], map_dict, site_var, type_var, Contest_Size, strength_var)
            st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Dupes'] <= max_dupes]
            st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] >= min_salary]
            st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] <= max_salary]
            st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Finish_percentile'] <= max_finish_percentile]
            if stack_dict is not None:
                if stack_toggle == 'All Stacks':
                    st.session_state['portfolio'] = st.session_state['portfolio']
                    st.session_state['portfolio'] = st.session_state['portfolio'][~st.session_state['portfolio']['Stack'].isin(stack_remove)]
                else:
                    st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Stack'].isin(stack_selections)]
                    st.session_state['portfolio'] = st.session_state['portfolio'][~st.session_state['portfolio']['Stack'].isin(stack_remove)]
            if player_remove:
                # Create mask for lineups that contain any of the removed players
                player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
                remove_mask = st.session_state['portfolio'][player_columns].apply(
                    lambda row: not any(player in list(row) for player in player_remove), axis=1
                )
                st.session_state['portfolio'] = st.session_state['portfolio'][remove_mask]
            
            if player_lock:
                # Create mask for lineups that contain all locked players
                player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
                
                lock_mask = st.session_state['portfolio'][player_columns].apply(
                    lambda row: all(player in list(row) for player in player_lock), axis=1
                )
                st.session_state['portfolio'] = st.session_state['portfolio'][lock_mask]
            export_file = st.session_state['portfolio'].copy()
            st.session_state['portfolio'] = st.session_state['portfolio'].sort_values(by='median', ascending=False)
            if csv_file is not None:
                player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
                for col in player_columns:
                    export_file[col] = export_file[col].map(st.session_state['export_dict'])
            with st.expander("Download options"):
                if stack_dict is not None:
                    with st.form(key='stack_form'):
                        st.subheader("Stack Count Adjustments")
                        st.info("This allows you to fine tune the stacks that you wish to export. If you want to make sure you don't export any of a specific stack you can 0 it out.")
                        # Create a container for stack value inputs
                        sort_container = st.container()
                        with sort_container:
                            sort_var = st.selectbox("Sort export portfolio by:", options=['median', 'Lineup Edge', 'Own'])
                        
                        # Get unique stack values
                        unique_stacks = sorted(list(set(stack_dict.values())))
                        
                        # Create a dictionary to store stack multipliers
                        if 'stack_multipliers' not in st.session_state:
                            st.session_state.stack_multipliers = {stack: 0.0 for stack in unique_stacks}
                        
                        # Create columns for the stack inputs
                        num_cols = 6  # Number of columns to display
                        for i in range(0, len(unique_stacks), num_cols):
                            cols = st.columns(num_cols)
                            for j, stack in enumerate(unique_stacks[i:i+num_cols]):
                                with cols[j]:
                                    # Create a unique key for each number input
                                    key = f"stack_count_{stack}"
                                    # Get the current count of this stack in the portfolio
                                    current_stack_count = len(st.session_state['portfolio'][st.session_state['portfolio']['Stack'] == stack])
                                    # Create number input with current value and max value based on actual count
                                    st.session_state.stack_multipliers[stack] = st.number_input(
                                        f"{stack} count",
                                        min_value=0.0,
                                        max_value=float(current_stack_count),
                                        value=float(current_stack_count),
                                        step=1.0,
                                        key=key
                                    )
                        
                        # Create a copy of the portfolio
                        portfolio_copy = st.session_state['portfolio'].copy()
                        
                        # Create a list to store selected rows
                        selected_rows = []
                        
                        # For each stack, select the top N rows based on the count value
                        for stack in unique_stacks:
                            if stack in st.session_state.stack_multipliers:
                                count = int(st.session_state.stack_multipliers[stack])
                                # Get rows for this stack
                                stack_rows = portfolio_copy[portfolio_copy['Stack'] == stack]
                                # Sort by median and take top N rows
                                top_rows = stack_rows.nlargest(count, sort_var)
                                selected_rows.append(top_rows)
                        
                        # Combine all selected rows
                        portfolio_copy = pd.concat(selected_rows)
                        
                        # Update export_file with filtered data
                        export_file = portfolio_copy.copy()
                        
                        submitted = st.form_submit_button("Submit")
                        if submitted:
                            st.write('Export portfolio updated!')
                
            st.download_button(label="Download Portfolio", data=export_file.to_csv(index=False), file_name="portfolio.csv", mime="text/csv")
            # Display the paginated dataframe first
            st.dataframe(
                st.session_state['portfolio'].style
                .background_gradient(axis=0)
                .background_gradient(cmap='RdYlGn')
                .background_gradient(cmap='RdYlGn_r', subset=['Finish_percentile', 'Own', 'Dupes'])
                .format(freq_format, precision=2), 
                height=1000,
                use_container_width=True
            )

            # Add pagination controls below the dataframe
            total_rows = len(st.session_state['portfolio'])
            rows_per_page = 500
            total_pages = (total_rows + rows_per_page - 1) // rows_per_page  # Ceiling division

            # Initialize page number in session state if not exists
            if 'current_page' not in st.session_state:
                st.session_state.current_page = 1

            # Display current page range info and pagination control in a single line
            st.write(
                f"Showing rows {(st.session_state.current_page - 1) * rows_per_page + 1} "
                f"to {min(st.session_state.current_page * rows_per_page, total_rows)} of {total_rows}"
            )
            
            # Add page number input
            st.session_state.current_page = st.number_input(
                f"Page (1-{total_pages})", 
                min_value=1, 
                max_value=total_pages,
                value=st.session_state.current_page
            )

            # Calculate start and end indices for current page
            start_idx = (st.session_state.current_page - 1) * rows_per_page
            end_idx = min(start_idx + rows_per_page, total_rows)

            # Get the subset of data for the current page
            current_page_data = st.session_state['portfolio'].iloc[start_idx:end_idx]
            
            # Create player summary dataframe
            player_stats = []
            player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
            
            if type_var == 'Showdown':
                # Handle Captain positions
                for player in player_names:
                    # Create mask for lineups where this player is Captain (first column)
                    cpt_mask = st.session_state['portfolio'][player_columns[0]] == player
                    
                    if cpt_mask.any():
                        player_stats.append({
                            'Player': f"{player} (CPT)",
                            'Lineup Count': cpt_mask.sum(),
                            'Avg Median': st.session_state['portfolio'][cpt_mask]['median'].mean(),
                            'Avg Own': st.session_state['portfolio'][cpt_mask]['Own'].mean(),
                            'Avg Dupes': st.session_state['portfolio'][cpt_mask]['Dupes'].mean(),
                            'Avg Finish %': st.session_state['portfolio'][cpt_mask]['Finish_percentile'].mean(),
                            'Avg Lineup Edge': st.session_state['portfolio'][cpt_mask]['Lineup Edge'].mean(),
                        })
                    
                    # Create mask for lineups where this player is FLEX (other columns)
                    flex_mask = st.session_state['portfolio'][player_columns[1:]].apply(
                        lambda row: player in list(row), axis=1
                    )
                    
                    if flex_mask.any():
                        player_stats.append({
                            'Player': f"{player} (FLEX)",
                            'Lineup Count': flex_mask.sum(),
                            'Avg Median': st.session_state['portfolio'][flex_mask]['median'].mean(),
                            'Avg Own': st.session_state['portfolio'][flex_mask]['Own'].mean(),
                            'Avg Dupes': st.session_state['portfolio'][flex_mask]['Dupes'].mean(),
                            'Avg Finish %': st.session_state['portfolio'][flex_mask]['Finish_percentile'].mean(),
                            'Avg Lineup Edge': st.session_state['portfolio'][flex_mask]['Lineup Edge'].mean(),
                        })
            else:
                # Original Classic format processing
                for player in player_names:
                    player_mask = st.session_state['portfolio'][player_columns].apply(
                        lambda row: player in list(row), axis=1
                    )
                    
                    if player_mask.any():
                        player_stats.append({
                            'Player': player,
                            'Lineup Count': player_mask.sum(),
                            'Avg Median': st.session_state['portfolio'][player_mask]['median'].mean(),
                            'Avg Own': st.session_state['portfolio'][player_mask]['Own'].mean(),
                            'Avg Dupes': st.session_state['portfolio'][player_mask]['Dupes'].mean(),
                            'Avg Finish %': st.session_state['portfolio'][player_mask]['Finish_percentile'].mean(),
                            'Avg Lineup Edge': st.session_state['portfolio'][player_mask]['Lineup Edge'].mean(),
                        })
            
            player_summary = pd.DataFrame(player_stats)
            player_summary = player_summary.sort_values('Lineup Count', ascending=False)
            
            st.subheader("Player Summary")
            st.dataframe(
                player_summary.style
                .background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Avg Finish %', 'Avg Own', 'Avg Dupes'])
                .format({
                    'Avg Median': '{:.2f}',
                    'Avg Own': '{:.2f}',
                    'Avg Dupes': '{:.2f}',
                    'Avg Finish %': '{:.2%}',
                    'Avg Lineup Edge': '{:.2%}'
                }),
                height=400,
                use_container_width=True
            )