James McCool
Remove table display of salary and cleaned contest data in app.py and load_contest_file.py for a cleaner user interface. This change streamlines the data presentation by eliminating unnecessary table outputs while maintaining existing functionality.
5abfd03
import streamlit as st | |
import pandas as pd | |
from rapidfuzz import process, fuzz | |
from numpy import where as np_where | |
def load_contest_file(upload, type, helper = None, sport = None): | |
if upload is not None: | |
try: | |
try: | |
if upload.name.endswith('.csv'): | |
raw_df = pd.read_csv(upload) | |
elif upload.name.endswith(('.xls', '.xlsx')): | |
raw_df = pd.read_excel(upload) | |
else: | |
st.error('Please upload either a CSV or Excel file') | |
return None | |
except: | |
raw_df = upload | |
if helper is not None: | |
helper_df = helper | |
print('Made it through initial upload') | |
# Select and rename essential columns for the actual upload | |
if helper is None: | |
df = raw_df[['EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup', 'Player', 'Roster Position', '%Drafted', 'FPTS', 'Salary', 'Team']] | |
else: | |
df = raw_df[['EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup', 'Player', 'Roster Position', '%Drafted', 'FPTS']] | |
df = df.rename(columns={'Roster Position': 'Pos', '%Drafted': 'Own'}) | |
print('Made it through rename') | |
# Split EntryName into base name and entry count | |
df['BaseName'] = df['EntryName'].str.replace(r'\s*\(\d+/\d+\)$', '', regex=True) | |
df['EntryCount'] = df['EntryName'].str.extract(r'\((\d+/\d+)\)') | |
df['EntryCount'] = df['EntryCount'].fillna('1/1') # Default to 1/1 if no entry count | |
if type == 'Showdown': | |
df['FPTS'] = np_where(df['Pos'] == 'CPT', df['FPTS'] / 1.5, df['FPTS']) | |
# Convert ownership percentage to float | |
try: | |
df['Own'] = df['Own'].str.replace('%', '').astype(float) | |
except: | |
df['Own'] = df['Own'].astype(float) | |
print('Made it through ownership conversion') | |
# Select and rename essential columns for the actual upload | |
if helper is not None: | |
df_helper = helper_df[['Player', 'Salary', 'Team']] | |
print('Made it through helper') | |
contest_names = df.Player.unique() | |
if helper is not None: | |
helper_names = helper_df.Player.unique() | |
contest_match_dict = {} | |
helper_match_dict = {} | |
for names in contest_names: | |
match = process.extractOne( | |
names, | |
helper_names, | |
score_cutoff = 85 | |
) | |
if match: | |
contest_match_dict[names] = match[0] | |
else: | |
contest_match_dict[names] = names | |
for names in helper_names: | |
match = process.extractOne( | |
names, | |
contest_names, | |
score_cutoff = 85 | |
) | |
if match: | |
helper_match_dict[names] = match[0] | |
else: | |
helper_match_dict[names] = names | |
for key, value in helper_match_dict.items(): | |
if key not in contest_match_dict: | |
contest_match_dict[key] = value | |
df_helper['Player'] = df_helper['Player'].map(contest_match_dict) | |
df_helper = df_helper.drop_duplicates(subset='Player', keep='first') | |
# Create separate dataframes for different player attributes | |
if helper is not None: | |
ownership_df = df[['Player', 'Own']] | |
fpts_df = df[['Player', 'FPTS']] | |
salary_df = df_helper[['Player', 'Salary']] | |
team_df = df_helper[['Player', 'Team']] | |
pos_df = df[['Player', 'Pos']] | |
else: | |
ownership_df = df[['Player', 'Own']] | |
fpts_df = df[['Player', 'FPTS']] | |
salary_df = df[['Player', 'Salary']] | |
team_df = df[['Player', 'Team']] | |
pos_df = df[['Player', 'Pos']] | |
print('Made it through dictionaries') | |
# Create the cleaned dataframe with just the essential columns | |
cleaned_df = df[['BaseName', 'Lineup']] | |
if type == 'Classic': | |
if sport == 'MLB': | |
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF '], value=',', regex=True) | |
elif sport == 'MMA': | |
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' F ', 'F '], value=',', regex=True) | |
elif sport == 'GOLF': | |
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' G ', 'G '], value=',', regex=True) | |
print(sport) | |
check_lineups = cleaned_df.copy() | |
if sport == 'MLB': | |
cleaned_df[['Remove', '1B', '2B', '3B', 'C', 'OF1', 'OF2', 'OF3', 'P1', 'P2', 'SS']] = cleaned_df['Lineup'].str.split(',', expand=True) | |
elif sport == 'MMA': | |
cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True) | |
elif sport == 'GOLF': | |
cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True) | |
cleaned_df = cleaned_df.drop(columns=['Lineup', 'Remove']) | |
entry_counts = cleaned_df['BaseName'].value_counts() | |
cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts) | |
if sport == 'MLB': | |
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'P1', 'P2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']] | |
elif sport == 'MMA': | |
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] | |
elif sport == 'GOLF': | |
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] | |
elif type == 'Showdown': | |
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' UTIL ', 'CPT '], value=',', regex=True) | |
print(type) | |
check_lineups = cleaned_df.copy() | |
cleaned_df[['Remove', 'CPT', 'UTIL1', 'UTIL2', 'UTIL3', 'UTIL4', 'UTIL5']] = cleaned_df['Lineup'].str.split(',', expand=True) | |
cleaned_df = cleaned_df.drop(columns=['Lineup', 'Remove']) | |
entry_counts = cleaned_df['BaseName'].value_counts() | |
cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts) | |
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'CPT', 'UTIL1', 'UTIL2', 'UTIL3', 'UTIL4', 'UTIL5']] | |
print('Made it through check_lineups') | |
# Get unique entry names | |
entry_list = list(set(df['BaseName'].dropna())) | |
entry_list.sort() | |
return cleaned_df, ownership_df, fpts_df, entry_list, check_lineups | |
except Exception as e: | |
st.error(f'Error loading file: {str(e)}') | |
return None | |
return None |