James McCool commited on
Commit
a8c9973
·
1 Parent(s): 265f036

Remove redundant player frame from session state and clean up unused variables in app.py

Browse files

- Deleted the 'player_frame' from session state upon submission to ensure a fresh state for player selections.
- Removed unused variables related to player counts, streamlining the data processing logic for improved performance and clarity.

Files changed (1) hide show
  1. app.py +2 -6
app.py CHANGED
@@ -112,6 +112,8 @@ with tab2:
112
  entry_names = st.multiselect("Select players", options=st.session_state['entry_list'], default=[])
113
  submitted = st.form_submit_button("Submit")
114
  if submitted:
 
 
115
  # Apply entry name filter if specific entries are selected
116
  if entry_parse_var == 'Specific' and entry_names:
117
  working_df = working_df[working_df['BaseName'].isin(entry_names)]
@@ -180,12 +182,6 @@ with tab2:
180
  working_df['dupes'] = working_df.groupby('sorted').transform('size')
181
  working_df = working_df.drop('sorted', axis=1)
182
 
183
-
184
- contest_players = set()
185
- players_1per = set()
186
- players_5per = set()
187
- players_10per = set()
188
- players_20per = set()
189
  for col in player_columns:
190
  contest_players = working_df.copy()
191
  players_1per = working_df.nlargest(n=int(len(working_df) * 0.01), columns='actual_fpts')
 
112
  entry_names = st.multiselect("Select players", options=st.session_state['entry_list'], default=[])
113
  submitted = st.form_submit_button("Submit")
114
  if submitted:
115
+ if 'player_frame' in st.session_state:
116
+ del st.session_state['player_frame']
117
  # Apply entry name filter if specific entries are selected
118
  if entry_parse_var == 'Specific' and entry_names:
119
  working_df = working_df[working_df['BaseName'].isin(entry_names)]
 
182
  working_df['dupes'] = working_df.groupby('sorted').transform('size')
183
  working_df = working_df.drop('sorted', axis=1)
184
 
 
 
 
 
 
 
185
  for col in player_columns:
186
  contest_players = working_df.copy()
187
  players_1per = working_df.nlargest(n=int(len(working_df) * 0.01), columns='actual_fpts')