File size: 75,132 Bytes
069adbe
 
 
 
 
1a21253
069adbe
 
 
 
 
 
 
 
 
 
 
4f8d205
8e0da46
069adbe
 
 
 
 
255a179
069adbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28cb5be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069adbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730a147
 
 
 
8e0da46
 
 
 
 
 
 
 
85f2b5f
8e0da46
 
 
 
 
 
 
 
ae44282
8e0da46
 
85f2b5f
8e0da46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730a147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d209a5b
730a147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a21253
730a147
 
 
 
85f2b5f
 
 
 
 
 
730a147
069adbe
255a179
 
 
069adbe
255a179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069adbe
255a179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069adbe
255a179
 
 
 
069adbe
255a179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069adbe
255a179
 
069adbe
255a179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069adbe
255a179
 
 
 
069adbe
255a179
 
 
069adbe
255a179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069adbe
255a179
 
069adbe
255a179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069adbe
255a179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069adbe
255a179
 
 
 
069adbe
255a179
 
 
069adbe
255a179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069adbe
255a179
 
069adbe
255a179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069adbe
255a179
 
 
069adbe
255a179
 
 
 
069adbe
255a179
 
069adbe
255a179
 
069adbe
255a179
 
069adbe
255a179
 
069adbe
255a179
 
 
069adbe
255a179
 
 
 
 
 
069adbe
255a179
 
 
 
 
 
 
 
 
069adbe
255a179
 
 
069adbe
255a179
069adbe
255a179
 
069adbe
255a179
 
 
 
 
 
069adbe
255a179
 
 
 
 
 
 
 
 
069adbe
255a179
 
 
069adbe
255a179
069adbe
255a179
 
069adbe
255a179
 
 
 
 
 
069adbe
255a179
 
 
 
 
069adbe
255a179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069adbe
255a179
 
 
069adbe
255a179
 
 
 
069adbe
255a179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069adbe
255a179
069adbe
57ecfc8
069adbe
57ecfc8
 
 
703a937
a5888d7
 
57ecfc8
 
 
 
46cffe3
57ecfc8
 
 
 
 
28cb5be
069adbe
 
bd90e32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069adbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87e0fcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069adbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57ecfc8
2e2f822
28cb5be
d318223
5244b28
25fcef5
 
 
 
 
d318223
 
 
 
 
 
 
5244b28
25fcef5
 
 
 
 
 
 
 
 
330dac8
51ae6c5
33fc799
e599376
20665ec
51ae6c5
20665ec
283a8e1
bd90e32
11b09bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20665ec
11b09bf
51ae6c5
28cb5be
283a8e1
c8b2207
25fcef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f08f4f1
25fcef5
 
 
 
 
 
 
7a401f2
 
 
ecf059f
 
 
7a401f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97f24d7
7a401f2
97f24d7
7a401f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d75bf8
 
83df1df
 
 
4d2cf7c
 
 
 
099dd08
069adbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099dd08
 
6c7cd22
099dd08
 
 
 
 
 
 
069adbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87e0fcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069adbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import time
from rapidfuzz import process, fuzz
import random

## import global functions
from global_func.clean_player_name import clean_player_name
from global_func.load_file import load_file
from global_func.load_ss_file import load_ss_file
from global_func.find_name_mismatches import find_name_mismatches
from global_func.predict_dupes import predict_dupes
from global_func.highlight_rows import highlight_changes, highlight_changes_winners, highlight_changes_losers
from global_func.load_csv import load_csv
from global_func.find_csv_mismatches import find_csv_mismatches
from global_func.trim_portfolio import trim_portfolio
from global_func.get_portfolio_names import get_portfolio_names

freq_format = {'Finish_percentile': '{:.2%}', 'Lineup Edge': '{:.2%}', 'Win%': '{:.2%}'}
player_wrong_names_mlb = ['Enrique Hernandez']
player_right_names_mlb = ['Kike Hernandez']

tab1, tab2 = st.tabs(["Data Load", "Manage Portfolio"])
with tab1:
    if st.button('Clear data', key='reset1'):
        st.session_state.clear()
    # Add file uploaders to your app
    col1, col2, col3 = st.columns(3)

    with col1:
        st.subheader("Draftkings/Fanduel CSV")
        st.info("Upload the player pricing CSV from the site you are playing on. This is used in late swap exporting and/or with SaberSim portfolios, but is not necessary for the portfolio management functions.")

        upload_csv_col, csv_template_col = st.columns([3, 1])
        with upload_csv_col:
            csv_file = st.file_uploader("Upload CSV File", type=['csv'])
            if 'csv_file' in st.session_state:
                del st.session_state['csv_file']
        with csv_template_col:

            csv_template_df = pd.DataFrame(columns=['Name', 'ID', 'Roster Position', 'Salary'])

            st.download_button(
                label="CSV Template",
                data=csv_template_df.to_csv(index=False),
                file_name="csv_template.csv",
                mime="text/csv"
            )
        st.session_state['csv_file'] = load_csv(csv_file)
        try:
            st.session_state['csv_file']['Salary'] = st.session_state['csv_file']['Salary'].astype(str).str.replace(',', '').astype(int)
        except:
            pass
            
        if csv_file:
            st.session_state['csv_file'] = st.session_state['csv_file'].drop_duplicates(subset=['Name'])
            st.success('Projections file loaded successfully!')
            st.dataframe(st.session_state['csv_file'].head(10))
    
    with col2:
        st.subheader("Portfolio File")
        st.info("Go ahead and upload a portfolio file here. Only include player columns and an optional 'Stack' column if you are playing MLB.")
        saber_toggle = st.radio("Are you uploading from SaberSim?", options=['No', 'Yes'])
        st.info("If you are uploading from SaberSim, you will need to upload a CSV file for the slate for name matching.")
        if saber_toggle == 'Yes':
            if csv_file is not None:
                portfolio_file = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
                if 'portfolio' in st.session_state:
                    del st.session_state['portfolio']
                if 'export_portfolio' in st.session_state:
                    del st.session_state['export_portfolio']

        else:
            portfolio_file = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
            if 'portfolio' in st.session_state:
                del st.session_state['portfolio']
            if 'export_portfolio' in st.session_state:
                del st.session_state['export_portfolio']
        if 'portfolio' not in st.session_state:
            if portfolio_file:
                if saber_toggle == 'Yes':
                    st.session_state['export_portfolio'], st.session_state['portfolio'] = load_ss_file(portfolio_file, st.session_state['csv_file'])
                    st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all')
                    st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True)
                    st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all')
                    st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True)
                else:
                    st.session_state['export_portfolio'], st.session_state['portfolio'] = load_file(portfolio_file)
                    st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all')
                    st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True)
                    st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all')
                    st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True)
                # Check if Stack column exists in the portfolio
                if 'Stack' in st.session_state['portfolio'].columns:
                    # Create dictionary mapping index to Stack values
                    stack_dict = dict(zip(st.session_state['portfolio'].index, st.session_state['portfolio']['Stack']))
                    st.write(f"Found {len(stack_dict)} stack assignments")
                    st.session_state['portfolio'] = st.session_state['portfolio'].drop(columns=['Stack'])
                else:
                    stack_dict = None
                    st.info("No Stack column found in portfolio")
                if st.session_state['portfolio'] is not None:
                    st.success('Portfolio file loaded successfully!')
                    st.session_state['portfolio'] = st.session_state['portfolio'].apply(lambda x: x.replace(player_wrong_names_mlb, player_right_names_mlb))
                    st.dataframe(st.session_state['portfolio'].head(10))

    with col3:
        st.subheader("Projections File")
        st.info("upload a projections file that has 'player_names', 'salary', 'median', 'ownership', and 'captain ownership' (Needed for Showdown) columns. Note that the salary for showdown needs to be the FLEX salary, not the captain salary.")
        
        # Create two columns for the uploader and template button
        upload_col, template_col = st.columns([3, 1])
        
        with upload_col:
            projections_file = st.file_uploader("Upload Projections File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
            if 'projections_df' in st.session_state:
                del st.session_state['projections_df']
        
        with template_col:
            # Create empty DataFrame with required columns
            template_df = pd.DataFrame(columns=['player_names', 'position', 'team', 'salary', 'median', 'ownership', 'captain ownership'])
            # Add download button for template
            st.download_button(
                label="Template",
                data=template_df.to_csv(index=False),
                file_name="projections_template.csv",
                mime="text/csv"
            )
            
        if projections_file:
            export_projections, projections = load_file(projections_file)
            if projections is not None:
                st.success('Projections file loaded successfully!')
                projections = projections.apply(lambda x: x.replace(player_wrong_names_mlb, player_right_names_mlb))
                st.dataframe(projections.head(10))

    if portfolio_file and projections_file:
        if st.session_state['portfolio'] is not None and projections is not None:
            st.subheader("Name Matching Analysis")
            # Initialize projections_df in session state if it doesn't exist
            # Get unique names from portfolio
            st.session_state['portfolio_names'] = get_portfolio_names(st.session_state['portfolio'])
            
            # Get names from projections
            projection_names = projections['player_names'].tolist()
            
            # Create match dictionary for portfolio names to projection names
            portfolio_match_dict = {}
            unmatched_names = []
            for portfolio_name in st.session_state['portfolio_names']:
                match = process.extractOne(
                    portfolio_name,
                    projection_names,
                    score_cutoff=85
                )
                if match:
                    portfolio_match_dict[portfolio_name] = match[0]
                    st.write(f"{portfolio_name} matched to {match[0]}")
                else:
                    portfolio_match_dict[portfolio_name] = portfolio_name
                    unmatched_names.append(portfolio_name)
            
            # Update portfolio with matched names
            portfolio = st.session_state['portfolio'].copy()
            player_columns = [col for col in portfolio.columns 
                            if col not in ['salary', 'median', 'Own']]
            
            # For each player column, update names using the match dictionary
            for col in player_columns:
                portfolio[col] = portfolio[col].map(lambda x: portfolio_match_dict.get(x, x))
            
            # Update the portfolio in session state
            st.session_state['portfolio'] = portfolio
            st.session_state['origin_portfolio'] = st.session_state['portfolio'].copy()
            
            # Store the match dictionary for reference
            st.session_state['portfolio_to_projection_matches'] = portfolio_match_dict
            
            if 'projections_df' not in st.session_state:
                st.session_state['projections_df'] = projections.copy()
                st.session_state['projections_df']['salary'] = (st.session_state['projections_df']['salary'].astype(str).str.replace(',', '').astype(float).astype(int))
            try:
                name_id_map = dict(zip(
                    st.session_state['csv_file']['Name'], 
                    st.session_state['csv_file']['Name + ID']
                ))
                print("Using Name + ID mapping")
            except:
                name_id_map = dict(zip(
                    st.session_state['csv_file']['Nickname'], 
                    st.session_state['csv_file']['Id']
                ))
                print("Using Nickname + Id mapping")
            
            # Get all names at once
            names = projections['player_names'].tolist()
            choices = list(name_id_map.keys())
            
            # Create a dictionary to store matches
            match_dict = {}
            
            # Process each name individually but more efficiently
            for name in names:
                # Use extractOne with score_cutoff for efficiency
                match = process.extractOne(
                    name,
                    choices,
                    score_cutoff=85
                )
                
                if match:
                    match_dict[name] = name_id_map[match[0]]
                else:
                    match_dict[name] = name

            # Apply the matches
            projections['upload_match'] = projections['player_names'].map(match_dict)
            st.session_state['export_dict'] = match_dict
                
            if unmatched_names:
                st.warning(f"Found {len(unmatched_names)} names in portfolio without matches in projections:")
                for name in unmatched_names:
                    st.write(f"- {name}")
            else:
                st.success("All portfolio names were matched to projections!")
            st.session_state['origin_portfolio'] = st.session_state['portfolio'].copy()

# with tab2:
#     if st.button('Clear data', key='reset2'):
#         st.session_state.clear()
    
#     if 'portfolio' in st.session_state and 'projections_df' in st.session_state:

#         optimized_df = None

#         map_dict = {
#                     'pos_map': dict(zip(st.session_state['projections_df']['player_names'], 
#                                     st.session_state['projections_df']['position'])),
#                     'salary_map': dict(zip(st.session_state['projections_df']['player_names'], 
#                                         st.session_state['projections_df']['salary'])),
#                     'proj_map': dict(zip(st.session_state['projections_df']['player_names'], 
#                                     st.session_state['projections_df']['median'])),
#                     'own_map': dict(zip(st.session_state['projections_df']['player_names'],
#                                     st.session_state['projections_df']['ownership'])),
#                     'team_map': dict(zip(st.session_state['projections_df']['player_names'], 
#                                         st.session_state['projections_df']['team']))
#                 }
#         # Calculate new stats for optimized lineups
#         st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(
#             lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1
#         )
#         st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(
#             lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1
#         )

#         st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(
#             lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1
#         )

#         options_container = st.container()
#         with options_container:
#             col1, col2, col3, col4, col5, col6 = st.columns(6)
#             with col1:
#                 curr_site_var = st.selectbox("Select your current site", options=['DraftKings', 'FanDuel'])
#             with col2:
#                 curr_sport_var = st.selectbox("Select your current sport", options=['NBA', 'MLB', 'NFL', 'NHL', 'MMA'])
#             with col3:
#                 swap_var = st.multiselect("Select late swap strategy", options=['Optimize', 'Increase volatility', 'Decrease volatility'])
#             with col4:
#                 remove_teams_var = st.multiselect("What teams have already played?", options=st.session_state['projections_df']['team'].unique())
#             with col5:
#                 winners_var = st.multiselect("Are there any players doing exceptionally well?", options=st.session_state['projections_df']['player_names'].unique(), max_selections=3)
#             with col6:
#                 losers_var = st.multiselect("Are there any players doing exceptionally poorly?", options=st.session_state['projections_df']['player_names'].unique(), max_selections=3)
#         if st.button('Clear Late Swap'):
#             if 'optimized_df' in st.session_state:
#                 del st.session_state['optimized_df']

#             map_dict = {
#                         'pos_map': dict(zip(st.session_state['projections_df']['player_names'], 
#                                         st.session_state['projections_df']['position'])),
#                         'salary_map': dict(zip(st.session_state['projections_df']['player_names'], 
#                                             st.session_state['projections_df']['salary'])),
#                         'proj_map': dict(zip(st.session_state['projections_df']['player_names'], 
#                                         st.session_state['projections_df']['median'])),
#                         'own_map': dict(zip(st.session_state['projections_df']['player_names'], 
#                                         st.session_state['projections_df']['ownership'])),
#                         'team_map': dict(zip(st.session_state['projections_df']['player_names'], 
#                                         st.session_state['projections_df']['team']))
#                     }
#             # Calculate new stats for optimized lineups
#             st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(
#                 lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1
#             )
#             st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(
#                 lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1
#             )
#             st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(
#                 lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1
#             )

#         if st.button('Run Late Swap'):
#             st.session_state['portfolio'] = st.session_state['portfolio'].drop(columns=['salary', 'median', 'Own'])
#             if curr_sport_var == 'NBA':
#                 if curr_site_var == 'DraftKings':
#                     st.session_state['portfolio'] = st.session_state['portfolio'].set_axis(['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL'], axis=1)
#                 else:
#                     st.session_state['portfolio'] = st.session_state['portfolio'].set_axis(['PG', 'PG', 'SG', 'SG', 'SF', 'SF', 'PF', 'PF', 'C'], axis=1)
            
#             # Define roster position rules
#             if curr_site_var == 'DraftKings':
#                 position_rules = {
#                     'PG': ['PG'],
#                     'SG': ['SG'],
#                     'SF': ['SF'],
#                     'PF': ['PF'],
#                     'C': ['C'],
#                     'G': ['PG', 'SG'],
#                     'F': ['SF', 'PF'],
#                     'UTIL': ['PG', 'SG', 'SF', 'PF', 'C']
#                     }
#             else:
#                 position_rules = {
#                     'PG': ['PG'],
#                     'SG': ['SG'],
#                     'SF': ['SF'],
#                     'PF': ['PF'],
#                     'C': ['C'],
#                 }
#             # Create position groups from projections data
#             position_groups = {}
#             for _, player in st.session_state['projections_df'].iterrows():
#                 positions = player['position'].split('/')
#                 for pos in positions:
#                     if pos not in position_groups:
#                         position_groups[pos] = []
#                     position_groups[pos].append({
#                         'player_names': player['player_names'],
#                         'salary': player['salary'],
#                         'median': player['median'],
#                         'ownership': player['ownership'],
#                         'positions': positions  # Store all eligible positions
#                     })

#             def optimize_lineup(row):
#                 current_lineup = []
#                 total_salary = 0
#                 if curr_site_var == 'DraftKings':
#                     salary_cap = 50000
#                 else:
#                     salary_cap = 60000
#                 used_players = set()

#                 # Convert row to dictionary with roster positions
#                 roster = {}
#                 for col, player in zip(row.index, row):
#                     if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']:
#                         roster[col] = {
#                             'name': player,
#                             'position': map_dict['pos_map'].get(player, '').split('/'),
#                             'team': map_dict['team_map'].get(player, ''),
#                             'salary': map_dict['salary_map'].get(player, 0),
#                             'median': map_dict['proj_map'].get(player, 0),
#                             'ownership': map_dict['own_map'].get(player, 0)
#                         }
#                         total_salary += roster[col]['salary']
#                         used_players.add(player)

#                 # Optimize each roster position in random order
#                 roster_positions = list(roster.items())
#                 random.shuffle(roster_positions)
                
#                 for roster_pos, current in roster_positions:
#                     # Skip optimization for players from removed teams
#                     if current['team'] in remove_teams_var:
#                         continue
                    
#                     valid_positions = position_rules[roster_pos]
#                     better_options = []

#                     # Find valid replacements for this roster position
#                     for pos in valid_positions:
#                         if pos in position_groups:
#                             pos_options = [
#                                 p for p in position_groups[pos]
#                                 if p['median'] > current['median']
#                                 and (total_salary - current['salary'] + p['salary']) <= salary_cap
#                                 and p['player_names'] not in used_players
#                                 and any(valid_pos in p['positions'] for valid_pos in valid_positions)
#                                 and map_dict['team_map'].get(p['player_names']) not in remove_teams_var  # Check team restriction
#                             ]
#                             better_options.extend(pos_options)

#                     if better_options:
#                         # Remove duplicates
#                         better_options = {opt['player_names']: opt for opt in better_options}.values()
                        
#                         # Sort by median projection and take the best one
#                         best_replacement = max(better_options, key=lambda x: x['median'])
                        
#                         # Update the lineup and tracking variables
#                         used_players.remove(current['name'])
#                         used_players.add(best_replacement['player_names'])
#                         total_salary = total_salary - current['salary'] + best_replacement['salary']
#                         roster[roster_pos] = {
#                             'name': best_replacement['player_names'],
#                             'position': map_dict['pos_map'][best_replacement['player_names']].split('/'),
#                             'team': map_dict['team_map'][best_replacement['player_names']],
#                             'salary': best_replacement['salary'],
#                             'median': best_replacement['median'],
#                             'ownership': best_replacement['ownership']
#                         }

#                 # Return optimized lineup maintaining original column order
#                 return [roster[pos]['name'] for pos in row.index if pos in roster]

#             def optimize_lineup_winners(row):
#                 current_lineup = []
#                 total_salary = 0
#                 if curr_site_var == 'DraftKings':
#                     salary_cap = 50000
#                 else:
#                     salary_cap = 60000
#                 used_players = set()

#                 # Check if any winners are in the lineup and count them
#                 winners_in_lineup = sum(1 for player in row if player in winners_var)
#                 changes_needed = min(winners_in_lineup, 3) if winners_in_lineup > 0 else 0
#                 changes_made = 0

#                 # Convert row to dictionary with roster positions
#                 roster = {}
#                 for col, player in zip(row.index, row):
#                     if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']:
#                         roster[col] = {
#                             'name': player,
#                             'position': map_dict['pos_map'].get(player, '').split('/'),
#                             'team': map_dict['team_map'].get(player, ''),
#                             'salary': map_dict['salary_map'].get(player, 0),
#                             'median': map_dict['proj_map'].get(player, 0),
#                             'ownership': map_dict['own_map'].get(player, 0)
#                         }
#                         total_salary += roster[col]['salary']
#                         used_players.add(player)

#                 # Only proceed with ownership-based optimization if we have winners in the lineup
#                 if changes_needed > 0:
#                     # Randomize the order of positions to optimize
#                     roster_positions = list(roster.items())
#                     random.shuffle(roster_positions)
                    
#                     for roster_pos, current in roster_positions:
#                         # Stop if we've made enough changes
#                         if changes_made >= changes_needed:
#                             break
                            
#                         # Skip optimization for players from removed teams or if the current player is a winner
#                         if current['team'] in remove_teams_var or current['name'] in winners_var:
#                             continue
                        
#                         valid_positions = list(position_rules[roster_pos])
#                         random.shuffle(valid_positions)
#                         better_options = []

#                         # Find valid replacements with higher ownership
#                         for pos in valid_positions:
#                             if pos in position_groups:
#                                 pos_options = [
#                                     p for p in position_groups[pos]
#                                     if p['ownership'] > current['ownership']
#                                     and p['median'] >= current['median'] - 3
#                                     and (total_salary - current['salary'] + p['salary']) <= salary_cap
#                                     and (total_salary - current['salary'] + p['salary']) >= salary_cap - 1000
#                                     and p['player_names'] not in used_players
#                                     and any(valid_pos in p['positions'] for valid_pos in valid_positions)
#                                     and map_dict['team_map'].get(p['player_names']) not in remove_teams_var
#                                 ]
#                                 better_options.extend(pos_options)

#                         if better_options:
#                             # Remove duplicates
#                             better_options = {opt['player_names']: opt for opt in better_options}.values()
                            
#                             # Sort by ownership and take the highest owned option
#                             best_replacement = max(better_options, key=lambda x: x['ownership'])
                            
#                             # Update the lineup and tracking variables
#                             used_players.remove(current['name'])
#                             used_players.add(best_replacement['player_names'])
#                             total_salary = total_salary - current['salary'] + best_replacement['salary']
#                             roster[roster_pos] = {
#                                 'name': best_replacement['player_names'],
#                                 'position': map_dict['pos_map'][best_replacement['player_names']].split('/'),
#                                 'team': map_dict['team_map'][best_replacement['player_names']],
#                                 'salary': best_replacement['salary'],
#                                 'median': best_replacement['median'],
#                                 'ownership': best_replacement['ownership']
#                             }
#                             changes_made += 1

#                 # Return optimized lineup maintaining original column order
#                 return [roster[pos]['name'] for pos in row.index if pos in roster]
            
#             def optimize_lineup_losers(row):
#                 current_lineup = []
#                 total_salary = 0
#                 if curr_site_var == 'DraftKings':
#                     salary_cap = 50000
#                 else:
#                     salary_cap = 60000
#                 used_players = set()

#                 # Check if any winners are in the lineup and count them
#                 losers_in_lineup = sum(1 for player in row if player in losers_var)
#                 changes_needed = min(losers_in_lineup, 3) if losers_in_lineup > 0 else 0
#                 changes_made = 0

#                 # Convert row to dictionary with roster positions
#                 roster = {}
#                 for col, player in zip(row.index, row):
#                     if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']:
#                         roster[col] = {
#                             'name': player,
#                             'position': map_dict['pos_map'].get(player, '').split('/'),
#                             'team': map_dict['team_map'].get(player, ''),
#                             'salary': map_dict['salary_map'].get(player, 0),
#                             'median': map_dict['proj_map'].get(player, 0),
#                             'ownership': map_dict['own_map'].get(player, 0)
#                         }
#                         total_salary += roster[col]['salary']
#                         used_players.add(player)

#                 # Only proceed with ownership-based optimization if we have winners in the lineup
#                 if changes_needed > 0:
#                     # Randomize the order of positions to optimize
#                     roster_positions = list(roster.items())
#                     random.shuffle(roster_positions)
                    
#                     for roster_pos, current in roster_positions:
#                         # Stop if we've made enough changes
#                         if changes_made >= changes_needed:
#                             break
                            
#                         # Skip optimization for players from removed teams or if the current player is a winner
#                         if current['team'] in remove_teams_var or current['name'] in losers_var:
#                             continue
                        
#                         valid_positions = list(position_rules[roster_pos])
#                         random.shuffle(valid_positions)
#                         better_options = []

#                         # Find valid replacements with higher ownership
#                         for pos in valid_positions:
#                             if pos in position_groups:
#                                 pos_options = [
#                                     p for p in position_groups[pos]
#                                     if p['ownership'] < current['ownership']
#                                     and p['median'] >= current['median'] - 3
#                                     and (total_salary - current['salary'] + p['salary']) <= salary_cap
#                                     and (total_salary - current['salary'] + p['salary']) >= salary_cap - 1000
#                                     and p['player_names'] not in used_players
#                                     and any(valid_pos in p['positions'] for valid_pos in valid_positions)
#                                     and map_dict['team_map'].get(p['player_names']) not in remove_teams_var
#                                 ]
#                                 better_options.extend(pos_options)

#                         if better_options:
#                             # Remove duplicates
#                             better_options = {opt['player_names']: opt for opt in better_options}.values()
                            
#                             # Sort by ownership and take the highest owned option
#                             best_replacement = max(better_options, key=lambda x: x['ownership'])
                            
#                             # Update the lineup and tracking variables
#                             used_players.remove(current['name'])
#                             used_players.add(best_replacement['player_names'])
#                             total_salary = total_salary - current['salary'] + best_replacement['salary']
#                             roster[roster_pos] = {
#                                 'name': best_replacement['player_names'],
#                                 'position': map_dict['pos_map'][best_replacement['player_names']].split('/'),
#                                 'team': map_dict['team_map'][best_replacement['player_names']],
#                                 'salary': best_replacement['salary'],
#                                 'median': best_replacement['median'],
#                                 'ownership': best_replacement['ownership']
#                             }
#                             changes_made += 1

#                 # Return optimized lineup maintaining original column order
#                 return [roster[pos]['name'] for pos in row.index if pos in roster]

#             # Create a progress bar
#             progress_bar = st.progress(0)
#             status_text = st.empty()
            
#             # Process each lineup
#             optimized_lineups = []
#             total_lineups = len(st.session_state['portfolio'])
            
#             for idx, row in st.session_state['portfolio'].iterrows():
#                 # First optimization pass
#                 first_pass = optimize_lineup(row)
#                 first_pass_series = pd.Series(first_pass, index=row.index)

#                 second_pass = optimize_lineup(first_pass_series)
#                 second_pass_series = pd.Series(second_pass, index=row.index)

#                 third_pass = optimize_lineup(second_pass_series)
#                 third_pass_series = pd.Series(third_pass, index=row.index)

#                 fourth_pass = optimize_lineup(third_pass_series)
#                 fourth_pass_series = pd.Series(fourth_pass, index=row.index)

#                 fifth_pass = optimize_lineup(fourth_pass_series)
#                 fifth_pass_series = pd.Series(fifth_pass, index=row.index)
                
#                 # Second optimization pass
#                 final_lineup = optimize_lineup(fifth_pass_series)
#                 optimized_lineups.append(final_lineup)
                
#                 if 'Optimize' in swap_var:
#                     progress = (idx + 1) / total_lineups
#                     progress_bar.progress(progress)
#                     status_text.text(f'Optimizing Lineups {idx + 1} of {total_lineups}')
#                 else:
#                     pass
            
#             # Create new dataframe with optimized lineups
#             if 'Optimize' in swap_var:
#                 st.session_state['optimized_df_medians'] = pd.DataFrame(optimized_lineups, columns=st.session_state['portfolio'].columns)
#             else:
#                 st.session_state['optimized_df_medians'] = st.session_state['portfolio']

#             # Create a progress bar
#             progress_bar_winners = st.progress(0)
#             status_text_winners = st.empty()
            
#             # Process each lineup
#             optimized_lineups_winners = []
#             total_lineups = len(st.session_state['optimized_df_medians'])
            
#             for idx, row in st.session_state['optimized_df_medians'].iterrows():

#                 final_lineup = optimize_lineup_winners(row)
#                 optimized_lineups_winners.append(final_lineup)
                
#                 if 'Decrease volatility' in swap_var:
#                     progress_winners = (idx + 1) / total_lineups
#                     progress_bar_winners.progress(progress_winners)
#                     status_text_winners.text(f'Lowering Volatility around Winners {idx + 1} of {total_lineups}')
#                 else:
#                     pass
            
#             # Create new dataframe with optimized lineups
#             if 'Decrease volatility' in swap_var:
#                 st.session_state['optimized_df_winners'] = pd.DataFrame(optimized_lineups_winners, columns=st.session_state['optimized_df_medians'].columns)
#             else:
#                 st.session_state['optimized_df_winners'] = st.session_state['optimized_df_medians']

#             # Create a progress bar
#             progress_bar_losers = st.progress(0)
#             status_text_losers = st.empty()
            
#             # Process each lineup
#             optimized_lineups_losers = []
#             total_lineups = len(st.session_state['optimized_df_winners'])
            
#             for idx, row in st.session_state['optimized_df_winners'].iterrows():

#                 final_lineup = optimize_lineup_losers(row)
#                 optimized_lineups_losers.append(final_lineup)
                
#                 if 'Increase volatility' in swap_var:
#                     progress_losers = (idx + 1) / total_lineups
#                     progress_bar_losers.progress(progress_losers)
#                     status_text_losers.text(f'Increasing Volatility around Losers {idx + 1} of {total_lineups}')
#                 else:
#                     pass
            
#             # Create new dataframe with optimized lineups
#             if 'Increase volatility' in swap_var:
#                 st.session_state['optimized_df'] = pd.DataFrame(optimized_lineups_losers, columns=st.session_state['optimized_df_winners'].columns)
#             else:
#                 st.session_state['optimized_df'] = st.session_state['optimized_df_winners']
            
#             # Calculate new stats for optimized lineups
#             st.session_state['optimized_df']['salary'] = st.session_state['optimized_df'].apply(
#                 lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1
#             )
#             st.session_state['optimized_df']['median'] = st.session_state['optimized_df'].apply(
#                 lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1
#             )
#             st.session_state['optimized_df']['Own'] = st.session_state['optimized_df'].apply(
#                 lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1
#             )

#             # Display results
#             st.success('Optimization complete!')

#         if 'optimized_df' in st.session_state:
#             st.write("Increase in median highlighted in yellow, descrease in volatility highlighted in blue, increase in volatility highlighted in red:")
#             st.dataframe(
#                 st.session_state['optimized_df'].style
#                 .apply(highlight_changes, axis=1)
#                 .apply(highlight_changes_winners, axis=1)
#                 .apply(highlight_changes_losers, axis=1)
#                 .background_gradient(axis=0)
#                 .background_gradient(cmap='RdYlGn')
#                 .format(precision=2),
#                 height=1000,
#                 use_container_width=True
#             )
            
#             # Option to download optimized lineups
#             if st.button('Prepare Late Swap Export'):
#                 export_df = st.session_state['optimized_df'].copy()
                
#                 # Map player names to their export IDs for all player columns
#                 for col in export_df.columns:
#                     if col not in ['salary', 'median', 'Own']:
#                         export_df[col] = export_df[col].map(st.session_state['export_dict'])
                
#                 csv = export_df.to_csv(index=False)
#                 st.download_button(
#                     label="Download CSV",
#                     data=csv,
#                     file_name="optimized_lineups.csv",
#                     mime="text/csv"
#                 )
#         else:
#             st.write("Current Portfolio")
#             st.dataframe(
#                 st.session_state['portfolio'].style
#                 .background_gradient(axis=0)
#                 .background_gradient(cmap='RdYlGn')
#                 .format(precision=2),
#                 height=1000,
#                 use_container_width=True
#             )

with tab2:
    if 'portfolio' in st.session_state and 'projections_df' in st.session_state:
        
        excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Win%', 'Lineup Edge']
        with st.container():
            col1, col2, col3 = st.columns(3)
            with col1:
                site_var = st.selectbox("Select Site", ['Draftkings', 'Fanduel'])
                if st.button('Reset Portfolio', key='reset_port'):
                    st.session_state['portfolio'] = st.session_state['origin_portfolio'].copy()
                if st.button('Clear data', key='reset3'):
                    st.session_state.clear()
                
            with col2:
                sport_var = st.selectbox("Select Sport", ['NFL', 'MLB', 'NBA', 'NHL', 'MMA', 'CS2'])
                type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'])

            with col3:
                Contest_Size = st.number_input("Enter Contest Size", value=25000, min_value=1, step=1)
                strength_var = st.selectbox("Select field strength", ['Average', 'Sharp', 'Weak'])

        if site_var == 'Draftkings':
            if type_var == 'Classic':
                if sport_var == 'CS2':
                    map_dict = {
                        'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
                        'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
                        'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
                        'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
                        'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
                        'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
                        'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] * 1.5)),
                        'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
                        'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
                    }
                elif sport_var != 'CS2':
                    map_dict = {
                        'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
                        'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
                        'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
                        'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
                        'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
                        'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
                        'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
                        'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
                        'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
                    }
            elif type_var == 'Showdown':
                if sport_var == 'NFL':
                    map_dict = {
                        'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
                        'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
                        'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
                        'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
                        'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
                        'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
                        'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] * 1.5)),
                        'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
                        'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
                    }
                elif sport_var != 'NFL':
                    map_dict = {
                        'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
                        'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
                        'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] / 1.5)),
                        'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
                        'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
                        'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
                        'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
                        'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
                        'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
                    }
        elif site_var == 'Fanduel':
            map_dict = {
                'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
                'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
                'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
                'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
                'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
                'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
                'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
                'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
                'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
            }
        
        if type_var == 'Classic':
            if sport_var == 'CS2':
                # Calculate salary (CPT uses cpt_salary_map, others use salary_map)
                st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(
                    lambda row: map_dict['cpt_salary_map'].get(row.iloc[0], 0) + 
                            sum(map_dict['salary_map'].get(player, 0) for player in row.iloc[1:]),
                    axis=1
                )
                
                # Calculate median (CPT uses cpt_proj_map, others use proj_map)
                st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(
                    lambda row: map_dict['cpt_proj_map'].get(row.iloc[0], 0) + 
                            sum(map_dict['proj_map'].get(player, 0) for player in row.iloc[1:]),
                    axis=1
                )
                
                # Calculate ownership (CPT uses cpt_own_map, others use own_map)
                st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(
                    lambda row: map_dict['cpt_own_map'].get(row.iloc[0], 0) + 
                            sum(map_dict['own_map'].get(player, 0) for player in row.iloc[1:]),
                    axis=1
                )

            elif sport_var != 'CS2':
                st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
                st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row), axis=1)
                st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(lambda row: sum(map_dict['own_map'].get(player, 0) for player in row), axis=1)
                if stack_dict is not None:
                    st.session_state['portfolio']['Stack'] = st.session_state['portfolio'].index.map(stack_dict)
        elif type_var == 'Showdown':
            # Calculate salary (CPT uses cpt_salary_map, others use salary_map)
            st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(
                lambda row: map_dict['cpt_salary_map'].get(row.iloc[0], 0) + 
                          sum(map_dict['salary_map'].get(player, 0) for player in row.iloc[1:]),
                axis=1
            )
            
            # Calculate median (CPT uses cpt_proj_map, others use proj_map)
            st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(
                lambda row: map_dict['cpt_proj_map'].get(row.iloc[0], 0) + 
                          sum(map_dict['proj_map'].get(player, 0) for player in row.iloc[1:]),
                axis=1
            )
            
            # Calculate ownership (CPT uses cpt_own_map, others use own_map)
            st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(
                lambda row: map_dict['cpt_own_map'].get(row.iloc[0], 0) + 
                          sum(map_dict['own_map'].get(player, 0) for player in row.iloc[1:]),
                axis=1
            )

        col1, col2 = st.columns([2, 8])
        with col1:
            with st.expander('Macro Filter Options'):
                with st.form(key='macro_filter_form'):
                    max_dupes = st.number_input("Max acceptable dupes?", value=1000, min_value=1, step=1)
                    min_salary = st.number_input("Min acceptable salary?", value=1000, min_value=1000, step=100)
                    max_salary = st.number_input("Max acceptable salary?", value=60000, min_value=1000, step=100)
                    max_finish_percentile = st.number_input("Max acceptable finish percentile?", value=.50, min_value=0.005, step=.001)
                    min_lineup_edge = st.number_input("Min acceptable Lineup Edge?", value=-.5, min_value=-1.00, step=.001)
                    if stack_dict is not None:
                        stack_toggle = st.selectbox("Include specific stacks?", options=['All Stacks', 'Specific Stacks'], index=0)
                        stack_selections = st.multiselect("If Specific Stacks, Which to include?", options=sorted(list(set(stack_dict.values()))), default=[])
                        stack_remove = st.multiselect("If Specific Stacks, Which to remove?", options=sorted(list(set(stack_dict.values()))), default=[])
                    
                    submitted = st.form_submit_button("Submit")
            with st.expander('Micro Filter Options'):
                with st.form(key='micro_filter_form'):
                    player_names = set()
                    for col in st.session_state['portfolio'].columns:
                        if col not in excluded_cols:
                            player_names.update(st.session_state['portfolio'][col].unique())
                    player_lock = st.multiselect("Lock players?", options=sorted(list(player_names)), default=[])
                    player_remove = st.multiselect("Remove players?", options=sorted(list(player_names)), default=[])
                    
                    submitted = st.form_submit_button("Submit")
            with st.expander('Trimming Options'):
                st.info("Make sure you filter before trimming if you want to filter, trimming before a filter will reset your portfolio")
                with st.form(key='trim_form'):
                    performance_type = st.selectbox("Select Sorting variable", ['median', 'Finish_percentile'])
                    own_type = st.selectbox("Select trimming variable", ['Own', 'Geomean', 'Weighted Own'])
                    
                    submitted = st.form_submit_button("Trim")
                    if submitted:
                        st.write('initiated')
                        st.session_state['portfolio'] = predict_dupes(st.session_state['portfolio'], map_dict, site_var, type_var, Contest_Size, strength_var, sport_var)
                        st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Dupes'] <= max_dupes]
                        st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] >= min_salary]
                        st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] <= max_salary]
                        st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Finish_percentile'] <= max_finish_percentile]
                        st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Lineup Edge'] >= min_lineup_edge]
                        if stack_dict is not None:
                            if stack_toggle == 'All Stacks':
                                st.session_state['portfolio'] = st.session_state['portfolio']
                                st.session_state['portfolio'] = st.session_state['portfolio'][~st.session_state['portfolio']['Stack'].isin(stack_remove)]
                            else:
                                st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Stack'].isin(stack_selections)]
                                st.session_state['portfolio'] = st.session_state['portfolio'][~st.session_state['portfolio']['Stack'].isin(stack_remove)]
                        if player_remove:
                            # Create mask for lineups that contain any of the removed players
                            player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
                            remove_mask = st.session_state['portfolio'][player_columns].apply(
                                lambda row: not any(player in list(row) for player in player_remove), axis=1
                            )
                            st.session_state['portfolio'] = st.session_state['portfolio'][remove_mask]
                        
                        if player_lock:
                            # Create mask for lineups that contain all locked players
                            player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
                            
                            lock_mask = st.session_state['portfolio'][player_columns].apply(
                                lambda row: all(player in list(row) for player in player_lock), axis=1
                            )
                            st.session_state['portfolio'] = st.session_state['portfolio'][lock_mask]
                        
                        st.session_state['portfolio'] = trim_portfolio(st.session_state['portfolio'], performance_type, own_type)
                        st.session_state['portfolio'] = st.session_state['portfolio'].sort_values(by='median', ascending=False)

        with col2:
            st.write('initiated')
            st.session_state['portfolio'] = predict_dupes(st.session_state['portfolio'], map_dict, site_var, type_var, Contest_Size, strength_var, sport_var)
            st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Dupes'] <= max_dupes]
            st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] >= min_salary]
            st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] <= max_salary]
            st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Finish_percentile'] <= max_finish_percentile]
            st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Lineup Edge'] >= min_lineup_edge]
            if stack_dict is not None:
                if stack_toggle == 'All Stacks':
                    st.session_state['portfolio'] = st.session_state['portfolio']
                    st.session_state['portfolio'] = st.session_state['portfolio'][~st.session_state['portfolio']['Stack'].isin(stack_remove)]
                else:
                    st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Stack'].isin(stack_selections)]
                    st.session_state['portfolio'] = st.session_state['portfolio'][~st.session_state['portfolio']['Stack'].isin(stack_remove)]
            if player_remove:
                # Create mask for lineups that contain any of the removed players
                player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
                remove_mask = st.session_state['portfolio'][player_columns].apply(
                    lambda row: not any(player in list(row) for player in player_remove), axis=1
                )
                st.session_state['portfolio'] = st.session_state['portfolio'][remove_mask]
            
            if player_lock:
                # Create mask for lineups that contain all locked players
                player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
                
                lock_mask = st.session_state['portfolio'][player_columns].apply(
                    lambda row: all(player in list(row) for player in player_lock), axis=1
                )
                st.session_state['portfolio'] = st.session_state['portfolio'][lock_mask]
            st.session_state['portfolio'] = st.session_state['portfolio'].sort_values(by='median', ascending=False)
            with st.expander("Download options"):
                if stack_dict is not None:
                    download_type = st.selectbox("Simple or Advanced Download?", options=['Simple', 'Advanced'], key='download_choice')
                    if download_type == 'Simple':
                        st.session_state['export_file'] = st.session_state['portfolio'].copy()
                        for col in st.session_state['export_file'].columns:
                                    if col not in excluded_cols:
                                        st.session_state['export_file'][col] = st.session_state['export_file'][col].map(st.session_state['export_dict'])
                    else:
                        with st.form(key='stack_form'):
                            st.subheader("Stack Count Adjustments")
                            st.info("This allows you to fine tune the stacks that you wish to export. If you want to make sure you don't export any of a specific stack you can 0 it out.")
                            # Create a container for stack value inputs
                            sort_container = st.container()
                            with sort_container:
                                sort_var = st.selectbox("Sort export portfolio by:", options=['median', 'Lineup Edge', 'Own'])
                            
                            # Get unique stack values
                            unique_stacks = sorted(list(set(stack_dict.values())))
                            
                            # Create a dictionary to store stack multipliers
                            if 'stack_multipliers' not in st.session_state:
                                st.session_state.stack_multipliers = {stack: 0.0 for stack in unique_stacks}
                            
                            # Create columns for the stack inputs
                            num_cols = 6  # Number of columns to display
                            for i in range(0, len(unique_stacks), num_cols):
                                cols = st.columns(num_cols)
                                for j, stack in enumerate(unique_stacks[i:i+num_cols]):
                                    with cols[j]:
                                        # Create a unique key for each number input
                                        key = f"stack_count_{stack}"
                                        # Get the current count of this stack in the portfolio
                                        current_stack_count = len(st.session_state['portfolio'][st.session_state['portfolio']['Stack'] == stack])
                                        # Create number input with current value and max value based on actual count
                                        st.session_state.stack_multipliers[stack] = st.number_input(
                                            f"{stack} count",
                                            min_value=0.0,
                                            max_value=float(current_stack_count),
                                            value=0.0,
                                            step=1.0,
                                            key=key
                                        )
                            
                            portfolio_copy = st.session_state['portfolio'].copy()
                            
                            submitted = st.form_submit_button("Submit")
                            if submitted:
                                # Create a list to store selected rows
                                selected_rows = []
                                
                                # For each stack, select the top N rows based on the count value
                                for stack in unique_stacks:
                                    if stack in st.session_state.stack_multipliers:
                                        count = int(st.session_state.stack_multipliers[stack])
                                        # Get rows for this stack
                                        stack_rows = portfolio_copy[portfolio_copy['Stack'] == stack]
                                        # Sort by median and take top N rows
                                        top_rows = stack_rows.nlargest(count, sort_var)
                                        selected_rows.append(top_rows)

                                # Combine all selected rows
                                portfolio_concat = pd.concat(selected_rows)
                                
                                # Update export_file with filtered data
                                st.session_state['export_file'] = portfolio_concat.copy()
                                for col in st.session_state['export_file'].columns:
                                    if col not in excluded_cols:
                                        st.session_state['export_file'][col] = st.session_state['export_file'][col].map(st.session_state['export_dict'])
                                st.write('Export portfolio updated!')
                else:
                    st.session_state['export_file'] = st.session_state['portfolio'].copy()
                    for col in st.session_state['export_file'].columns:
                                    if col not in excluded_cols:
                                        st.session_state['export_file'][col] = st.session_state['export_file'][col].map(st.session_state['export_dict'])
            if 'export_file' in st.session_state:    
                st.download_button(label="Download Portfolio", data=st.session_state['export_file'].to_csv(index=False), file_name="portfolio.csv", mime="text/csv")
            else:
                st.error("No portfolio to download")
            
            # Add pagination controls below the dataframe
            total_rows = len(st.session_state['portfolio'])
            rows_per_page = 500
            total_pages = (total_rows + rows_per_page - 1) // rows_per_page  # Ceiling division

            # Initialize page number in session state if not exists
            if 'current_page' not in st.session_state:
                st.session_state.current_page = 1

            # Display current page range info and pagination control in a single line
            st.write(
                f"Showing rows {(st.session_state.current_page - 1) * rows_per_page + 1} "
                f"to {min(st.session_state.current_page * rows_per_page, total_rows)} of {total_rows}"
            )
            
            # Add page number input
            st.session_state.current_page = st.number_input(
                f"Page (1-{total_pages})", 
                min_value=1, 
                max_value=total_pages,
                value=st.session_state.current_page
            )

            # Calculate start and end indices for current page
            start_idx = (st.session_state.current_page - 1) * rows_per_page
            end_idx = min(start_idx + rows_per_page, total_rows)

            # Get the subset of data for the current page
            current_page_data = st.session_state['portfolio'].iloc[start_idx:end_idx]
            # Display the paginated dataframe first
            st.dataframe(
                current_page_data.style
                .background_gradient(axis=0)
                .background_gradient(cmap='RdYlGn')
                .background_gradient(cmap='RdYlGn_r', subset=['Finish_percentile', 'Own', 'Dupes'])
                .format(freq_format, precision=2), 
                height=1000,
                use_container_width=True
            )
            
            # Create player summary dataframe
            player_stats = []
            player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
            
            if type_var == 'Showdown':
                # Handle Captain positions
                for player in player_names:
                    # Create mask for lineups where this player is Captain (first column)
                    cpt_mask = st.session_state['portfolio'][player_columns[0]] == player
                    
                    if cpt_mask.any():
                        player_stats.append({
                            'Player': f"{player} (CPT)",
                            'Lineup Count': cpt_mask.sum(),
                            'Avg Median': st.session_state['portfolio'][cpt_mask]['median'].mean(),
                            'Avg Own': st.session_state['portfolio'][cpt_mask]['Own'].mean(),
                            'Avg Dupes': st.session_state['portfolio'][cpt_mask]['Dupes'].mean(),
                            'Avg Finish %': st.session_state['portfolio'][cpt_mask]['Finish_percentile'].mean(),
                            'Avg Lineup Edge': st.session_state['portfolio'][cpt_mask]['Lineup Edge'].mean(),
                        })
                    
                    # Create mask for lineups where this player is FLEX (other columns)
                    flex_mask = st.session_state['portfolio'][player_columns[1:]].apply(
                        lambda row: player in list(row), axis=1
                    )
                    
                    if flex_mask.any():
                        player_stats.append({
                            'Player': f"{player} (FLEX)",
                            'Lineup Count': flex_mask.sum(),
                            'Avg Median': st.session_state['portfolio'][flex_mask]['median'].mean(),
                            'Avg Own': st.session_state['portfolio'][flex_mask]['Own'].mean(),
                            'Avg Dupes': st.session_state['portfolio'][flex_mask]['Dupes'].mean(),
                            'Avg Finish %': st.session_state['portfolio'][flex_mask]['Finish_percentile'].mean(),
                            'Avg Lineup Edge': st.session_state['portfolio'][flex_mask]['Lineup Edge'].mean(),
                        })
            else:
                if sport_var == 'CS2':
                    # Handle Captain positions
                    for player in player_names:
                        # Create mask for lineups where this player is Captain (first column)
                        cpt_mask = st.session_state['portfolio'][player_columns[0]] == player
                        
                        if cpt_mask.any():
                            player_stats.append({
                                'Player': f"{player} (CPT)",
                                'Lineup Count': cpt_mask.sum(),
                                'Avg Median': st.session_state['portfolio'][cpt_mask]['median'].mean(),
                                'Avg Own': st.session_state['portfolio'][cpt_mask]['Own'].mean(),
                                'Avg Dupes': st.session_state['portfolio'][cpt_mask]['Dupes'].mean(),
                                'Avg Finish %': st.session_state['portfolio'][cpt_mask]['Finish_percentile'].mean(),
                                'Avg Lineup Edge': st.session_state['portfolio'][cpt_mask]['Lineup Edge'].mean(),
                            })
                        
                        # Create mask for lineups where this player is FLEX (other columns)
                        flex_mask = st.session_state['portfolio'][player_columns[1:]].apply(
                            lambda row: player in list(row), axis=1
                        )
                        
                        if flex_mask.any():
                            player_stats.append({
                                'Player': f"{player} (FLEX)",
                                'Lineup Count': flex_mask.sum(),
                                'Avg Median': st.session_state['portfolio'][flex_mask]['median'].mean(),
                                'Avg Own': st.session_state['portfolio'][flex_mask]['Own'].mean(),
                                'Avg Dupes': st.session_state['portfolio'][flex_mask]['Dupes'].mean(),
                                'Avg Finish %': st.session_state['portfolio'][flex_mask]['Finish_percentile'].mean(),
                                'Avg Lineup Edge': st.session_state['portfolio'][flex_mask]['Lineup Edge'].mean(),
                            })
                elif sport_var != 'CS2':
                    # Original Classic format processing
                    for player in player_names:
                        player_mask = st.session_state['portfolio'][player_columns].apply(
                            lambda row: player in list(row), axis=1
                        )
                        
                        if player_mask.any():
                            player_stats.append({
                                'Player': player,
                                'Lineup Count': player_mask.sum(),
                                'Avg Median': st.session_state['portfolio'][player_mask]['median'].mean(),
                                'Avg Own': st.session_state['portfolio'][player_mask]['Own'].mean(),
                                'Avg Dupes': st.session_state['portfolio'][player_mask]['Dupes'].mean(),
                                'Avg Finish %': st.session_state['portfolio'][player_mask]['Finish_percentile'].mean(),
                                'Avg Lineup Edge': st.session_state['portfolio'][player_mask]['Lineup Edge'].mean(),
                            })
            
            player_summary = pd.DataFrame(player_stats)
            player_summary = player_summary.sort_values('Lineup Count', ascending=False)
            
            st.subheader("Player Summary")
            st.dataframe(
                player_summary.style
                .background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Avg Finish %', 'Avg Own', 'Avg Dupes'])
                .format({
                    'Avg Median': '{:.2f}',
                    'Avg Own': '{:.2f}',
                    'Avg Dupes': '{:.2f}',
                    'Avg Finish %': '{:.2%}',
                    'Avg Lineup Edge': '{:.2%}'
                }),
                height=400,
                use_container_width=True
            )