File size: 4,636 Bytes
119b2bf
 
10c821a
 
119b2bf
206da8c
119b2bf
efb1867
206da8c
 
 
 
4955178
119b2bf
 
33beedc
2bbbfdd
119b2bf
02245bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206da8c
 
 
 
55b8b36
02245bb
55b8b36
 
 
 
 
119b2bf
55b8b36
 
119b2bf
55b8b36
 
 
 
 
 
119b2bf
55b8b36
 
119b2bf
201ffbb
55b8b36
 
 
201ffbb
55b8b36
 
 
 
 
 
 
206da8c
 
 
 
 
119b2bf
201ffbb
206da8c
 
201ffbb
206da8c
 
 
 
 
55b8b36
efb1867
02245bb
55b8b36
 
dca21a5
55b8b36
119b2bf
433242b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import pandas as pd
import math
from global_func.small_field_preset import small_field_preset
from global_func.large_field_preset import large_field_preset

def hedging_preset(portfolio: pd.DataFrame, lineup_target: int, projections_file: pd.DataFrame, sport: str):
    
    excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity']
    if sport == 'MLB':
        list_size = 3
    else:
        list_size = 5
        lineup_target = math.ceil(lineup_target * 2)

    check_own_df = projections_file.copy()
    check_own_df = check_own_df.sort_values(by='ownership', ascending=False)
    top_owned = check_own_df['player_names'].head(list_size).tolist()

    def get_team_hitter_ownership(projections_file: pd.DataFrame):
        """
        Calculate the sum ownership of hitters on each team.
        Excludes SP and P positions and sums ownership by team.
        
        Args:
            projections_file (pd.DataFrame): DataFrame with 'position', 'team', and 'ownership' columns
            
        Returns:
            pd.Series: Series with team names as index and total hitter ownership as values, sorted descending
        """
        # Filter out pitchers (SP and P positions)
        hitters_df = projections_file[~projections_file['position'].isin(['P', 'SP'])]
        
        # Group by team and sum ownership
        team_ownership = hitters_df.groupby('team')['ownership'].sum().sort_values(ascending=False)
    
        return team_ownership

    if sport == 'MLB':
        team_ownership = get_team_hitter_ownership(projections_file)
        top_owned_teams = team_ownership.head(list_size).index.tolist()
    
    init_counter = 6

    for runs in range(1, 5):
        concat_portfolio = pd.DataFrame(columns=portfolio.columns)
        for player in top_owned:
            print(player)
            working_df = portfolio.copy()

            # Create mask for lineups that contain any of the removed players
            player_columns = [col for col in working_df.columns if col not in excluded_cols]

            remove_mask = working_df[player_columns].apply(
                lambda row: player not in list(row), axis=1
            )
            lock_mask = working_df[player_columns].apply(
                lambda row: player in list(row), axis=1
            )

            removed_df = working_df[remove_mask]
            locked_df = working_df[lock_mask]

            removed_lineups = small_field_preset(removed_df, math.ceil(lineup_target / (list_size * init_counter)), excluded_cols, sport)
            print(len(removed_lineups))
            # Check if locked_df is empty before calling large_field_preset
            if not locked_df.empty:
                locked_lineups = large_field_preset(locked_df, math.ceil(lineup_target / (list_size * init_counter)), excluded_cols, sport)
                print(len(locked_lineups))
                concat_portfolio = pd.concat([concat_portfolio, removed_lineups, locked_lineups])
            else:
                # If no lineups contain this player, just add the removed lineups
                print(f"No lineups found containing {player}")
                concat_portfolio = pd.concat([concat_portfolio, removed_lineups])
        
        if sport == 'MLB':
            for team in top_owned_teams:
                working_df = portfolio.copy()
                removed_df = working_df[working_df['Stack'] != team]
                teams_df = working_df[working_df['Stack'] == team]

                removed_lineups = small_field_preset(removed_df, math.ceil(lineup_target / (list_size * init_counter)), excluded_cols, sport)
                # Check if teams_df is empty before calling large_field_preset
                if not teams_df.empty:
                    team_lineups = large_field_preset(teams_df, math.ceil(lineup_target / (list_size * init_counter)), excluded_cols, sport)
                    concat_portfolio = pd.concat([concat_portfolio, removed_lineups, team_lineups])
                else:
                    # If no lineups have this team stacked, just add the removed lineups
                    print(f"No lineups found with {team} stacked")
                    concat_portfolio = pd.concat([concat_portfolio, removed_lineups])

        concat_portfolio = concat_portfolio.drop_duplicates(subset=['median', 'Own', 'Lineup Edge', 'Diversity'])

        if len(concat_portfolio) >= lineup_target:
            return concat_portfolio.head(lineup_target)
        else:
            init_counter -= 1

    return concat_portfolio.head(lineup_target)