File size: 1,679 Bytes
43df572 1b1db4f 119b2bf 5ef03d6 3cc15e1 5ef03d6 d33556d 5ef03d6 43df572 5ef03d6 d33556d 5ef03d6 43df572 5ef03d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import pandas as pd
def small_field_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list):
excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Similarity Score']
player_columns = [col for col in portfolio.columns if col not in excluded_cols]
for slack_var in range(1, 20):
concat_portfolio = pd.DataFrame(columns=portfolio.columns)
for team in portfolio['Stack'].unique():
rows_to_drop = []
working_portfolio = portfolio.copy()
working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='Own', ascending = False)
working_portfolio = working_portfolio.reset_index(drop=True)
curr_own_type_max = working_portfolio.loc[0, 'Weighted Own'] + (slack_var / 20 * working_portfolio.loc[0, 'Weighted Own'])
for i in range(1, len(working_portfolio)):
if working_portfolio.loc[i, 'Weighted Own'] > curr_own_type_max:
rows_to_drop.append(i)
else:
curr_own_type_max = working_portfolio.loc[i, 'Weighted Own'] + (slack_var / 20 * working_portfolio.loc[i, 'Weighted Own'])
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
concat_portfolio = pd.concat([concat_portfolio, working_portfolio])
if len(concat_portfolio) >= lineup_target:
return concat_portfolio.sort_values(by='Own', ascending=False).head(lineup_target)
return concat_portfolio.sort_values(by='Own', ascending=False)
|