James McCool
Update import statements in hedging_preset.py to reflect new module structure. This change ensures proper access to small_field_preset and large_field_preset functions, enhancing code organization and maintainability.
10c821a
import pandas as pd | |
import math | |
from global_func.small_field_preset import small_field_preset | |
from global_func.large_field_preset import large_field_preset | |
def hedging_preset(portfolio: pd.DataFrame, lineup_target: int, projections_file: pd.DataFrame): | |
excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Similarity Score'] | |
check_own_df = projections_file.copy() | |
check_own_df = check_own_df.sort_values(by='Own', ascending=False) | |
top_owned = check_own_df['player_names'].head(3).tolist() | |
concat_portfolio = pd.DataFrame(columns=portfolio.columns) | |
for players in top_owned: | |
working_df = portfolio.copy() | |
# Create mask for lineups that contain any of the removed players | |
player_columns = [col for col in working_df.columns if col not in excluded_cols] | |
remove_mask = working_df[player_columns].apply( | |
lambda row: not any(player in list(row) for player in players), axis=1 | |
) | |
lock_mask = working_df[player_columns].apply( | |
lambda row: all(player in list(row) for player in players), axis=1 | |
) | |
removed_df = working_df[remove_mask] | |
locked_df = working_df[lock_mask] | |
removed_lineups = small_field_preset(removed_df, math.ceil(lineup_target / 2), excluded_cols) | |
locked_lineups = large_field_preset(locked_df, math.ceil(lineup_target / 2), excluded_cols) | |
concat_portfolio = pd.concat([concat_portfolio, removed_lineups, locked_lineups]) | |
return concat_portfolio.sort_values(by='median', ascending=False).head(lineup_target) |