DFS_Portfolio_Manager / global_func /small_field_preset.py
James McCool
Enhance app functionality by adding calculations for the highest owned teams and pitchers based on projections, improving user insights into team ownership trends. Refactor small_field_preset function to ensure consistent DataFrame structure by sorting working portfolio by median before returning results.
4507308
raw
history blame
1.2 kB
import pandas as pd
def small_field_preset(portfolio: pd.DataFrame, lineup_target: int):
for slack_var in range(1, 10):
rows_to_drop = []
working_portfolio = portfolio.sort_values(by='Own', ascending = False).reset_index(drop=True)
working_portfolio = working_portfolio[working_portfolio['Finish_percentile'] <= .10]
working_portfolio = working_portfolio.reset_index(drop=True)
curr_own_type_max = working_portfolio.loc[0, 'Weighted Own'] + (slack_var / 10 * working_portfolio.loc[0, 'Weighted Own'])
for i in range(1, len(working_portfolio)):
if working_portfolio.loc[i, 'Weighted Own'] > curr_own_type_max:
rows_to_drop.append(i)
else:
curr_own_type_max = working_portfolio.loc[i, 'Weighted Own'] + (slack_var / 10 * working_portfolio.loc[i, 'Weighted Own'])
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
if len(working_portfolio) >= lineup_target:
return working_portfolio.sort_values(by='median', ascending=False).head(lineup_target)
return working_portfolio.sort_values(by='median', ascending=False)