James McCool commited on
Commit
50f79c6
·
1 Parent(s): d33556d

Enhance portfolio distribution logic in distribute_preset.py by adding player exposure calculations and refining the handling of 'Similarity Score'. This update improves the accuracy of player selection and provides a summary of player exposure in the final output, ensuring a more comprehensive analysis of the lineup distribution process.

Browse files
Files changed (1) hide show
  1. global_func/distribute_preset.py +45 -1
global_func/distribute_preset.py CHANGED
@@ -2,6 +2,50 @@ import pandas as pd
2
 
3
  def distribute_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list):
4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  for slack_var in range(1, 20):
6
  concat_portfolio = pd.DataFrame(columns=portfolio.columns)
7
 
@@ -23,5 +67,5 @@ def distribute_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols:
23
 
24
  if len(concat_portfolio) >= lineup_target:
25
  return concat_portfolio.sort_values(by='median', ascending=True).head(lineup_target)
26
-
27
  return concat_portfolio.sort_values(by='median', ascending=True)
 
2
 
3
  def distribute_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list):
4
 
5
+ excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Similarity Score']
6
+ for slack_var in range(1, 20):
7
+ init_portfolio = pd.DataFrame(columns=portfolio.columns)
8
+
9
+ for team in portfolio['Stack'].unique():
10
+ rows_to_drop = []
11
+ working_portfolio = portfolio.copy()
12
+ working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='median', ascending = False)
13
+ working_portfolio = working_portfolio.reset_index(drop=True)
14
+ curr_own_type_max = working_portfolio.loc[0, 'Similarity Score'] + (slack_var / 20 * working_portfolio.loc[0, 'Similarity Score'])
15
+
16
+ for i in range(1, len(working_portfolio)):
17
+ if working_portfolio.loc[i, 'Similarity Score'] > curr_own_type_max:
18
+ rows_to_drop.append(i)
19
+ else:
20
+ curr_own_type_max = working_portfolio.loc[i, 'Similarity Score'] + (slack_var / 20 * working_portfolio.loc[i, 'Similarity Score'])
21
+
22
+ working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
23
+ init_portfolio = pd.concat([init_portfolio, working_portfolio])
24
+
25
+ if len(init_portfolio) >= lineup_target:
26
+ init_portfolio.sort_values(by='median', ascending=True).head(lineup_target)
27
+
28
+ player_list = set()
29
+ player_stats = []
30
+ for cols in init_portfolio.columns:
31
+ if cols not in excluded_cols:
32
+ player_list.update(init_portfolio[cols].unique())
33
+
34
+ for player in player_list:
35
+ player_mask = init_portfolio[~excluded_cols].apply(
36
+ lambda row: player in list(row), axis=1
37
+ )
38
+
39
+ if player_mask.any():
40
+ player_stats.append({
41
+ 'Player': player,
42
+ 'Lineup Count': player_mask.sum(),
43
+ 'Exposure': player_mask.sum() / len(init_portfolio)
44
+ })
45
+
46
+ player_summary = pd.DataFrame(player_stats)
47
+ print(player_summary.sort_values('Lineup Count', ascending=False).head(10))
48
+
49
  for slack_var in range(1, 20):
50
  concat_portfolio = pd.DataFrame(columns=portfolio.columns)
51
 
 
67
 
68
  if len(concat_portfolio) >= lineup_target:
69
  return concat_portfolio.sort_values(by='median', ascending=True).head(lineup_target)
70
+
71
  return concat_portfolio.sort_values(by='median', ascending=True)