File size: 4,751 Bytes
7545b49
 
 
 
 
 
fac7ac1
7545b49
 
 
 
 
 
 
 
 
ba685f6
 
7545b49
 
 
fac7ac1
7545b49
fac7ac1
7545b49
2536839
 
a655909
 
 
fac7ac1
 
 
 
 
 
 
 
 
b9e7e41
 
fac7ac1
 
 
 
 
b9e7e41
 
 
fac7ac1
 
 
 
b9e7e41
 
 
fac7ac1
 
a655909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeb63f1
a655909
 
 
 
 
 
eeb63f1
a655909
 
c5993eb
fac7ac1
7545b49
 
fac7ac1
7545b49
 
2536839
 
7545b49
 
a655909
 
 
eeb63f1
 
a655909
 
 
eeb63f1
 
a655909
0e59510
7545b49
a655909
fac7ac1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import pymongo
import time
from datetime import datetime, timedelta

@st.cache_resource
def init_conn():
        
        uri = st.secrets['mongo_uri']
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client["League_of_Legends_Database"]

        collection = db["gamelogs"] 
        min_date = datetime.strptime(collection.find_one({}, sort=[("date", 1)])["date"], "%Y-%m-%d %H:%M:%S")
        max_date = datetime.strptime(collection.find_one({}, sort=[("date", -1)])["date"], "%Y-%m-%d %H:%M:%S")
        team_names = collection.distinct("teamname")
        player_names = collection.distinct("playername")

        return db, team_names, player_names, min_date, max_date
    
db, team_names, player_names, min_date, max_date = init_conn()

display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}'}

# Create sidebar container for options
with st.sidebar:
    st.header("Team Analysis Options")

    # Date filtering options
    st.subheader("Date Range")
    date_filter = st.radio(
        "Select Date Range",
        ["Last Year", "Custom Range"]
    )
    
    if date_filter == "Last Year":
        end_date = max_date
        start_date = (end_date - timedelta(days=365))
    else:
        col1, col2 = st.columns(2)
        with col1:
            start_date = st.date_input(
                "Start Date",
                value=(max_date - timedelta(days=365)),
                min_value=min_date,
                max_value=max_date
            )
        with col2:
            end_date = st.date_input(
                "End Date",
                value=max_date,
                min_value=min_date,
                max_value=max_date
            )

    selected_team = st.selectbox(
        "Select Team",
        options=team_names,
        index=team_names.index("T1") if "T1" in team_names else 0
    )
    
    st.subheader("Prediction Settings")
    win_loss = st.selectbox(
        "Select Win/Loss",
        options=["Win", "Loss"],
        index=0
    )

    kill_prediction = st.number_input(
        "Predicted Team Kills",
        min_value=0,
        max_value=100,
        value=20
    )
    
    death_prediction = st.number_input(
        "Predicted Team Deaths",
        min_value=0,
        max_value=100,
        value=5
    )

@st.cache_data(ttl = 100)
def init_team_data(team, win_loss, kill_prediction, death_prediction, start_date, end_date):  
        
        collection = db["gamelogs"] 
        cursor = collection.find({"teamname": team, "date": {"$gte": start_date, "$lte": end_date}})
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['playername', 'teamname', 'playername_avg_kill_share_win', 'playername_avg_death_share_win', 'playername_avg_assist_share_win', 'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
        raw_display = raw_display.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%', 'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%', 'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
        team_data = raw_display.drop_duplicates(subset = ['playername'])

        if win_loss == "Win":
            team_data['Kill_Proj'] = team_data['wKill%'] * kill_prediction
            team_data['Death_Proj'] = team_data['wDeath%'] * death_prediction
            team_data['Assist_Proj'] = team_data['wAssist%'] * kill_prediction
            team_data = team_data[['playername', 'teamname', 'wKill%', 'wDeath%', 'wAssist%', 'wCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]
        else:
            team_data['Kill_Proj'] = team_data['lKill%'] * kill_prediction
            team_data['Death_Proj'] = team_data['lDeath%'] * death_prediction
            team_data['Assist_Proj'] = team_data['lAssist%'] * kill_prediction
            team_data = team_data[['playername', 'teamname', 'lKill%', 'lDeath%', 'lAssist%', 'lCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]

        return team_data.dropna().reset_index(drop=True)

if st.button("Run"):
    st.dataframe(init_team_data(selected_team, win_loss, kill_prediction, death_prediction, start_date, end_date).style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)