James McCool
Add advanced statistical calculations to init_team_data in app.py. Implemented new metrics for league, opponent, player, and team performance, including averages and boost calculations for kills, deaths, assists, and total CS. This enhancement improves the depth of analysis available for team performance evaluation.
a769f8a
raw
history blame
14.3 kB
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import pymongo
import time
from datetime import datetime, timedelta
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["League_of_Legends_Database"]
collection = db["gamelogs"]
min_date = datetime.strptime(collection.find_one({}, sort=[("date", 1)])["date"], "%Y-%m-%d %H:%M:%S")
max_date = datetime.strptime(collection.find_one({}, sort=[("date", -1)])["date"], "%Y-%m-%d %H:%M:%S")
team_names = collection.distinct("teamname")
player_names = collection.distinct("playername")
return db, team_names, player_names, min_date, max_date
db, team_names, player_names, min_date, max_date = init_conn()
display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}'}
# Create sidebar container for options
with st.sidebar:
st.header("Team Analysis Options")
# Date filtering options
st.subheader("Date Range")
date_filter = st.radio(
"Select Date Range",
["Last Year", "Custom Range"]
)
if date_filter == "Last Year":
end_date = max_date
start_date = (end_date - timedelta(days=365))
else:
col1, col2 = st.columns(2)
with col1:
start_date = st.date_input(
"Start Date",
value=max_date.date() - timedelta(days=30),
min_value=min_date.date(),
max_value=max_date.date()
)
with col2:
end_date = st.date_input(
"End Date",
value=max_date.date(),
min_value=min_date.date(),
max_value=max_date.date()
)
selected_team = st.selectbox(
"Select Team",
options=team_names,
index=team_names.index("T1") if "T1" in team_names else 0
)
st.subheader("Prediction Settings")
win_loss = st.selectbox(
"Select Win/Loss",
options=["Win", "Loss"],
index=0
)
kill_prediction = st.number_input(
"Predicted Team Kills",
min_value=0,
max_value=100,
value=20
)
death_prediction = st.number_input(
"Predicted Team Deaths",
min_value=0,
max_value=100,
value=5
)
@st.cache_data(ttl = 60)
def init_team_data(team, win_loss, kill_prediction, death_prediction, start_date, end_date):
# Convert date objects to datetime strings in the correct format
start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S")
collection = db["gamelogs"]
cursor = collection.find({"teamname": team, "date": {"$gte": start_datetime, "$lte": end_datetime}})
raw_display = pd.DataFrame(list(cursor))
calc_columns = ['kills', 'deaths', 'assists', 'total_cs']
league_win_stats = {}
league_loss_stats = {}
league_pos_win_stats = {}
league_pos_loss_stats = {}
Opponent_win_allowed_stats = {}
Opponent_loss_allowed_stats = {}
Opponent_pos_win_allowed_stats = {}
Opponent_pos_loss_allowed_stats = {}
playername_win_stats = {}
playername_loss_stats = {}
teamname_win_stats = {}
teamname_loss_stats = {}
for stats in calc_columns:
league_win_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] != 'team')].groupby('league')[stats].mean().to_dict()
league_loss_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] != 'team')].groupby('league')[stats].mean().to_dict()
Opponent_win_allowed_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] != 'team')].groupby('Opponent')[stats].mean().to_dict()
Opponent_loss_allowed_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] != 'team')].groupby('Opponent')[stats].mean().to_dict()
for stats in calc_columns:
league_pos_win_stats[stats] = {
league: group.groupby('position')[stats].mean().to_dict()
for league, group in raw_display[raw_display['result'] == 1].groupby('league')
}
league_pos_loss_stats[stats] = {
league: group.groupby('position')[stats].mean().to_dict()
for league, group in raw_display[raw_display['result'] == 0].groupby('league')
}
Opponent_pos_win_allowed_stats[stats] = {
opponent: group.groupby('position')[stats].mean().to_dict()
for opponent, group in raw_display[raw_display['result'] == 1].groupby('Opponent')
}
Opponent_pos_loss_allowed_stats[stats] = {
opponent: group.groupby('position')[stats].mean().to_dict()
for opponent, group in raw_display[raw_display['result'] == 0].groupby('Opponent')
}
for stats in calc_columns:
playername_win_stats[stats] = raw_display[raw_display['result'] == 1].groupby(['playername'])[stats].mean().to_dict()
playername_loss_stats[stats] = raw_display[raw_display['result'] == 0].groupby(['playername'])[stats].mean().to_dict()
teamname_win_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
teamname_loss_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
for stat in calc_columns:
column_name = f'league_avg_{stat}_win'
raw_display[column_name] = raw_display.apply(
lambda row: league_win_stats[stat].get(row['league'], 0),
axis=1
)
column_name = f'league_avg_{stat}_loss'
raw_display[column_name] = raw_display.apply(
lambda row: league_loss_stats[stat].get(row['league'], 0),
axis=1
)
column_name = f'Opponent_avg_{stat}_allowed_win'
raw_display[column_name] = raw_display.apply(
lambda row: Opponent_win_allowed_stats[stat].get(row['Opponent'], 0),
axis=1
)
column_name = f'Opponent_avg_{stat}_allowed_loss'
raw_display[column_name] = raw_display.apply(
lambda row: Opponent_loss_allowed_stats[stat].get(row['Opponent'], 0),
axis=1
)
column_name = f'league_pos_avg_{stat}_win'
raw_display[column_name] = raw_display.apply(
lambda row: league_pos_win_stats[stat].get(row['league'], {}).get(row['position'], 0),
axis=1
)
column_name = f'league_pos_avg_{stat}_loss'
raw_display[column_name] = raw_display.apply(
lambda row: league_pos_loss_stats[stat].get(row['league'], {}).get(row['position'], 0),
axis=1
)
column_name = f'Opponent_pos_avg_{stat}_allowed_win'
raw_display[column_name] = raw_display.apply(
lambda row: Opponent_pos_win_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
axis=1
)
column_name = f'Opponent_pos_avg_{stat}_allowed_loss'
raw_display[column_name] = raw_display.apply(
lambda row: Opponent_pos_loss_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
axis=1
)
column_name = f'playername_avg_{stat}_win'
raw_display[column_name] = raw_display.apply(
lambda row: playername_win_stats[stat].get(row['playername'], 0),
axis=1
)
column_name = f'playername_avg_{stat}_loss'
raw_display[column_name] = raw_display.apply(
lambda row: playername_loss_stats[stat].get(row['playername'], 0),
axis=1
)
column_name = f'teamname_avg_{stat}_win'
raw_display[column_name] = raw_display.apply(
lambda row: teamname_win_stats[stat].get(row['teamname'], 0),
axis=1
)
column_name = f'teamname_avg_{stat}_loss'
raw_display[column_name] = raw_display.apply(
lambda row: teamname_loss_stats[stat].get(row['teamname'], 0),
axis=1
)
raw_display['overall_win_kills_boost'] = raw_display['Opponent_avg_kills_allowed_win'] / raw_display['league_avg_kills_win']
raw_display['overall_win_deaths_boost'] = raw_display['Opponent_avg_deaths_allowed_win'] / raw_display['league_avg_deaths_win']
raw_display['overall_win_assists_boost'] = raw_display['Opponent_avg_assists_allowed_win'] / raw_display['league_avg_assists_win']
raw_display['overall_win_total_cs_boost'] = raw_display['Opponent_avg_total_cs_allowed_win'] / raw_display['league_avg_total_cs_win']
raw_display['overall_loss_kills_boost'] = raw_display['Opponent_avg_kills_allowed_loss'] / raw_display['league_avg_kills_loss']
raw_display['overall_loss_deaths_boost'] = raw_display['Opponent_avg_deaths_allowed_loss'] / raw_display['league_avg_deaths_loss']
raw_display['overall_loss_assists_boost'] = raw_display['Opponent_avg_assists_allowed_loss'] / raw_display['league_avg_assists_loss']
raw_display['overall_loss_total_cs_boost'] = raw_display['Opponent_avg_total_cs_allowed_loss'] / raw_display['league_avg_total_cs_loss']
raw_display['overall_win_kills_boost_pos'] = raw_display['Opponent_pos_avg_kills_allowed_win'] / raw_display['league_pos_avg_kills_win']
raw_display['overall_win_deaths_boost_pos'] = raw_display['Opponent_pos_avg_deaths_allowed_win'] / raw_display['league_pos_avg_deaths_win']
raw_display['overall_win_assists_boost_pos'] = raw_display['Opponent_pos_avg_assists_allowed_win'] / raw_display['league_pos_avg_assists_win']
raw_display['overall_win_total_cs_boost_pos'] = raw_display['Opponent_pos_avg_total_cs_allowed_win'] / raw_display['league_pos_avg_total_cs_win']
raw_display['overall_loss_kills_boost_pos'] = raw_display['Opponent_pos_avg_kills_allowed_loss'] / raw_display['league_pos_avg_kills_loss']
raw_display['overall_loss_deaths_boost_pos'] = raw_display['Opponent_pos_avg_deaths_allowed_loss'] / raw_display['league_pos_avg_deaths_loss']
raw_display['overall_loss_assists_boost_pos'] = raw_display['Opponent_pos_avg_assists_allowed_loss'] / raw_display['league_pos_avg_assists_loss']
raw_display['overall_loss_total_cs_boost_pos'] = raw_display['Opponent_pos_avg_total_cs_allowed_loss'] / raw_display['league_pos_avg_total_cs_loss']
raw_display['playername_avg_kill_share_win'] = raw_display['playername_avg_kills_win'] / raw_display['teamname_avg_kills_win']
raw_display['playername_avg_death_share_win'] = raw_display['playername_avg_deaths_win'] / raw_display['teamname_avg_deaths_win']
raw_display['playername_avg_assist_share_win'] = raw_display['playername_avg_assists_win'] / raw_display['teamname_avg_kills_win']
raw_display['playername_avg_cs_share_win'] = raw_display['playername_avg_total_cs_win'] / raw_display['teamname_avg_total_cs_win']
raw_display['playername_avg_kill_share_loss'] = raw_display['playername_avg_kills_loss'] / raw_display['teamname_avg_kills_loss']
raw_display['playername_avg_death_share_loss'] = raw_display['playername_avg_deaths_loss'] / raw_display['teamname_avg_deaths_loss']
raw_display['playername_avg_assist_share_loss'] = raw_display['playername_avg_assists_loss'] / raw_display['teamname_avg_kills_loss']
raw_display['playername_avg_cs_share_loss'] = raw_display['playername_avg_total_cs_loss'] / raw_display['teamname_avg_total_cs_loss']
raw_display = raw_display[['playername', 'teamname', 'playername_avg_kill_share_win', 'playername_avg_death_share_win', 'playername_avg_assist_share_win', 'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
raw_display = raw_display.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%', 'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%', 'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
team_data = raw_display.drop_duplicates(subset = ['playername'])
if win_loss == "Win":
team_data['Kill_Proj'] = team_data['wKill%'] * kill_prediction
team_data['Death_Proj'] = team_data['wDeath%'] * death_prediction
team_data['Assist_Proj'] = team_data['wAssist%'] * kill_prediction
team_data = team_data[['playername', 'teamname', 'wKill%', 'wDeath%', 'wAssist%', 'wCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]
else:
team_data['Kill_Proj'] = team_data['lKill%'] * kill_prediction
team_data['Death_Proj'] = team_data['lDeath%'] * death_prediction
team_data['Assist_Proj'] = team_data['lAssist%'] * kill_prediction
team_data = team_data[['playername', 'teamname', 'lKill%', 'lDeath%', 'lAssist%', 'lCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]
return team_data.dropna().reset_index(drop=True)
if st.button("Run"):
st.dataframe(init_team_data(selected_team, win_loss, kill_prediction, death_prediction, start_date, end_date).style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)