James McCool
Refactor date input handling in app.py to improve date selection logic. Updated date filtering to ensure proper date formatting and consistency, allowing for seamless selection of date ranges including a "Last Year" option. This enhances user experience and data analysis capabilities.
b9e7e41
raw
history blame
4.75 kB
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import pymongo
import time
from datetime import datetime, timedelta
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["League_of_Legends_Database"]
collection = db["gamelogs"]
min_date = datetime.strptime(collection.find_one({}, sort=[("date", 1)])["date"], "%Y-%m-%d %H:%M:%S")
max_date = datetime.strptime(collection.find_one({}, sort=[("date", -1)])["date"], "%Y-%m-%d %H:%M:%S")
team_names = collection.distinct("teamname")
player_names = collection.distinct("playername")
return db, team_names, player_names, min_date, max_date
db, team_names, player_names, min_date, max_date = init_conn()
display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}'}
# Create sidebar container for options
with st.sidebar:
st.header("Team Analysis Options")
# Date filtering options
st.subheader("Date Range")
date_filter = st.radio(
"Select Date Range",
["Last Year", "Custom Range"]
)
if date_filter == "Last Year":
end_date = max_date
start_date = (end_date - timedelta(days=365))
else:
col1, col2 = st.columns(2)
with col1:
start_date = st.date_input(
"Start Date",
value=(max_date - timedelta(days=365)),
min_value=min_date,
max_value=max_date
)
with col2:
end_date = st.date_input(
"End Date",
value=max_date,
min_value=min_date,
max_value=max_date
)
selected_team = st.selectbox(
"Select Team",
options=team_names,
index=team_names.index("T1") if "T1" in team_names else 0
)
st.subheader("Prediction Settings")
win_loss = st.selectbox(
"Select Win/Loss",
options=["Win", "Loss"],
index=0
)
kill_prediction = st.number_input(
"Predicted Team Kills",
min_value=0,
max_value=100,
value=20
)
death_prediction = st.number_input(
"Predicted Team Deaths",
min_value=0,
max_value=100,
value=5
)
@st.cache_data(ttl = 100)
def init_team_data(team, win_loss, kill_prediction, death_prediction, start_date, end_date):
collection = db["gamelogs"]
cursor = collection.find({"teamname": team, "date": {"$gte": start_date, "$lte": end_date}})
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['playername', 'teamname', 'playername_avg_kill_share_win', 'playername_avg_death_share_win', 'playername_avg_assist_share_win', 'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
raw_display = raw_display.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%', 'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%', 'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
team_data = raw_display.drop_duplicates(subset = ['playername'])
if win_loss == "Win":
team_data['Kill_Proj'] = team_data['wKill%'] * kill_prediction
team_data['Death_Proj'] = team_data['wDeath%'] * death_prediction
team_data['Assist_Proj'] = team_data['wAssist%'] * kill_prediction
team_data = team_data[['playername', 'teamname', 'wKill%', 'wDeath%', 'wAssist%', 'wCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]
else:
team_data['Kill_Proj'] = team_data['lKill%'] * kill_prediction
team_data['Death_Proj'] = team_data['lDeath%'] * death_prediction
team_data['Assist_Proj'] = team_data['lAssist%'] * kill_prediction
team_data = team_data[['playername', 'teamname', 'lKill%', 'lDeath%', 'lAssist%', 'lCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]
return team_data.dropna().reset_index(drop=True)
if st.button("Run"):
st.dataframe(init_team_data(selected_team, win_loss, kill_prediction, death_prediction, start_date, end_date).style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)