James McCool
Refactor kill and death prediction inputs in app.py. Introduced a selection box for users to choose between predicting kills/deaths or using averages, enhancing user experience. Updated input validation to ensure minimum values are set correctly, improving data integrity in team performance projections.
cb5655c
raw
history blame
16.1 kB
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import pymongo
import time
from datetime import datetime, timedelta
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["League_of_Legends_Database"]
current_date = datetime.now()
collection = db["gamelogs"]
max_date = current_date - timedelta(days=1)
min_date = current_date - timedelta(days=365)
team_names = collection.distinct("teamname")
player_names = collection.distinct("playername")
return db, team_names, player_names, min_date, max_date
db, team_names, player_names, min_date, max_date = init_conn()
display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}'}
# Create sidebar container for options
with st.sidebar:
st.header("Team Analysis Options")
# Date filtering options
st.subheader("Date Range")
date_filter = st.radio(
"Select Date Range",
["Last Year", "Custom Range"]
)
if date_filter == "Last Year":
end_date = max_date
start_date = (end_date - timedelta(days=365))
else:
col1, col2 = st.columns(2)
with col1:
start_date = st.date_input(
"Start Date",
value=max_date.date() - timedelta(days=30),
min_value=min_date.date(),
max_value=max_date.date()
)
with col2:
end_date = st.date_input(
"End Date",
value=max_date.date(),
min_value=min_date.date(),
max_value=max_date.date()
)
selected_team = st.selectbox(
"Select Team",
options=team_names,
index=team_names.index("T1") if "T1" in team_names else 0
)
st.subheader("Prediction Settings")
win_loss = st.selectbox(
"Select Win/Loss",
options=["Win", "Loss"],
index=0
)
game_settings = st.selectbox(
"Predict kills/deaths or use average?",
options=["Average", "Predict"],
index=0
)
if game_settings == "Average":
kill_prediction = 0
death_prediction = 0
else:
kill_prediction = st.number_input(
"Predicted Team Kills",
min_value=1,
max_value=100,
value=20
)
death_prediction = st.number_input(
"Predicted Team Deaths",
min_value=1,
max_value=100,
value=5
)
@st.cache_data(ttl = 60)
def init_team_data(team, win_loss, kill_prediction, death_prediction, start_date, end_date):
# Convert date objects to datetime strings in the correct format
start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S")
collection = db["gamelogs"]
cursor = collection.find({"teamname": team, "date": {"$gte": start_datetime, "$lte": end_datetime}})
raw_display = pd.DataFrame(list(cursor))
calc_columns = ['kills', 'deaths', 'assists', 'total_cs']
league_win_stats = {}
league_loss_stats = {}
league_pos_win_stats = {}
league_pos_loss_stats = {}
Opponent_win_allowed_stats = {}
Opponent_loss_allowed_stats = {}
Opponent_pos_win_allowed_stats = {}
Opponent_pos_loss_allowed_stats = {}
playername_win_stats = {}
playername_loss_stats = {}
teamname_win_stats = {}
teamname_loss_stats = {}
for stats in calc_columns:
league_win_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] != 'team')].groupby('league')[stats].mean().to_dict()
league_loss_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] != 'team')].groupby('league')[stats].mean().to_dict()
Opponent_win_allowed_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] != 'team')].groupby('Opponent')[stats].mean().to_dict()
Opponent_loss_allowed_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] != 'team')].groupby('Opponent')[stats].mean().to_dict()
for stats in calc_columns:
league_pos_win_stats[stats] = {
league: group.groupby('position')[stats].mean().to_dict()
for league, group in raw_display[raw_display['result'] == 1].groupby('league')
}
league_pos_loss_stats[stats] = {
league: group.groupby('position')[stats].mean().to_dict()
for league, group in raw_display[raw_display['result'] == 0].groupby('league')
}
Opponent_pos_win_allowed_stats[stats] = {
opponent: group.groupby('position')[stats].mean().to_dict()
for opponent, group in raw_display[raw_display['result'] == 1].groupby('Opponent')
}
Opponent_pos_loss_allowed_stats[stats] = {
opponent: group.groupby('position')[stats].mean().to_dict()
for opponent, group in raw_display[raw_display['result'] == 0].groupby('Opponent')
}
for stats in calc_columns:
playername_win_stats[stats] = raw_display[raw_display['result'] == 1].groupby(['playername'])[stats].mean().to_dict()
playername_loss_stats[stats] = raw_display[raw_display['result'] == 0].groupby(['playername'])[stats].mean().to_dict()
teamname_win_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
teamname_loss_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
for stat in calc_columns:
column_name = f'league_avg_{stat}_win'
raw_display[column_name] = raw_display.apply(
lambda row: league_win_stats[stat].get(row['league'], 0),
axis=1
)
column_name = f'league_avg_{stat}_loss'
raw_display[column_name] = raw_display.apply(
lambda row: league_loss_stats[stat].get(row['league'], 0),
axis=1
)
column_name = f'Opponent_avg_{stat}_allowed_win'
raw_display[column_name] = raw_display.apply(
lambda row: Opponent_win_allowed_stats[stat].get(row['Opponent'], 0),
axis=1
)
column_name = f'Opponent_avg_{stat}_allowed_loss'
raw_display[column_name] = raw_display.apply(
lambda row: Opponent_loss_allowed_stats[stat].get(row['Opponent'], 0),
axis=1
)
column_name = f'league_pos_avg_{stat}_win'
raw_display[column_name] = raw_display.apply(
lambda row: league_pos_win_stats[stat].get(row['league'], {}).get(row['position'], 0),
axis=1
)
column_name = f'league_pos_avg_{stat}_loss'
raw_display[column_name] = raw_display.apply(
lambda row: league_pos_loss_stats[stat].get(row['league'], {}).get(row['position'], 0),
axis=1
)
column_name = f'Opponent_pos_avg_{stat}_allowed_win'
raw_display[column_name] = raw_display.apply(
lambda row: Opponent_pos_win_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
axis=1
)
column_name = f'Opponent_pos_avg_{stat}_allowed_loss'
raw_display[column_name] = raw_display.apply(
lambda row: Opponent_pos_loss_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
axis=1
)
column_name = f'playername_avg_{stat}_win'
raw_display[column_name] = raw_display.apply(
lambda row: playername_win_stats[stat].get(row['playername'], 0),
axis=1
)
column_name = f'playername_avg_{stat}_loss'
raw_display[column_name] = raw_display.apply(
lambda row: playername_loss_stats[stat].get(row['playername'], 0),
axis=1
)
column_name = f'teamname_avg_{stat}_win'
raw_display[column_name] = raw_display.apply(
lambda row: teamname_win_stats[stat].get(row['teamname'], 0),
axis=1
)
column_name = f'teamname_avg_{stat}_loss'
raw_display[column_name] = raw_display.apply(
lambda row: teamname_loss_stats[stat].get(row['teamname'], 0),
axis=1
)
raw_display['overall_win_kills_boost'] = raw_display['Opponent_avg_kills_allowed_win'] / raw_display['league_avg_kills_win']
raw_display['overall_win_deaths_boost'] = raw_display['Opponent_avg_deaths_allowed_win'] / raw_display['league_avg_deaths_win']
raw_display['overall_win_assists_boost'] = raw_display['Opponent_avg_assists_allowed_win'] / raw_display['league_avg_assists_win']
raw_display['overall_win_total_cs_boost'] = raw_display['Opponent_avg_total_cs_allowed_win'] / raw_display['league_avg_total_cs_win']
raw_display['overall_loss_kills_boost'] = raw_display['Opponent_avg_kills_allowed_loss'] / raw_display['league_avg_kills_loss']
raw_display['overall_loss_deaths_boost'] = raw_display['Opponent_avg_deaths_allowed_loss'] / raw_display['league_avg_deaths_loss']
raw_display['overall_loss_assists_boost'] = raw_display['Opponent_avg_assists_allowed_loss'] / raw_display['league_avg_assists_loss']
raw_display['overall_loss_total_cs_boost'] = raw_display['Opponent_avg_total_cs_allowed_loss'] / raw_display['league_avg_total_cs_loss']
raw_display['overall_win_kills_boost_pos'] = raw_display['Opponent_pos_avg_kills_allowed_win'] / raw_display['league_pos_avg_kills_win']
raw_display['overall_win_deaths_boost_pos'] = raw_display['Opponent_pos_avg_deaths_allowed_win'] / raw_display['league_pos_avg_deaths_win']
raw_display['overall_win_assists_boost_pos'] = raw_display['Opponent_pos_avg_assists_allowed_win'] / raw_display['league_pos_avg_assists_win']
raw_display['overall_win_total_cs_boost_pos'] = raw_display['Opponent_pos_avg_total_cs_allowed_win'] / raw_display['league_pos_avg_total_cs_win']
raw_display['overall_loss_kills_boost_pos'] = raw_display['Opponent_pos_avg_kills_allowed_loss'] / raw_display['league_pos_avg_kills_loss']
raw_display['overall_loss_deaths_boost_pos'] = raw_display['Opponent_pos_avg_deaths_allowed_loss'] / raw_display['league_pos_avg_deaths_loss']
raw_display['overall_loss_assists_boost_pos'] = raw_display['Opponent_pos_avg_assists_allowed_loss'] / raw_display['league_pos_avg_assists_loss']
raw_display['overall_loss_total_cs_boost_pos'] = raw_display['Opponent_pos_avg_total_cs_allowed_loss'] / raw_display['league_pos_avg_total_cs_loss']
raw_display['playername_avg_kill_share_win'] = raw_display['playername_avg_kills_win'] / raw_display['teamname_avg_kills_win']
raw_display['playername_avg_death_share_win'] = raw_display['playername_avg_deaths_win'] / raw_display['teamname_avg_deaths_win']
raw_display['playername_avg_assist_share_win'] = raw_display['playername_avg_assists_win'] / raw_display['teamname_avg_kills_win']
raw_display['playername_avg_cs_share_win'] = raw_display['playername_avg_total_cs_win'] / raw_display['teamname_avg_total_cs_win']
raw_display['playername_avg_kill_share_loss'] = raw_display['playername_avg_kills_loss'] / raw_display['teamname_avg_kills_loss']
raw_display['playername_avg_death_share_loss'] = raw_display['playername_avg_deaths_loss'] / raw_display['teamname_avg_deaths_loss']
raw_display['playername_avg_assist_share_loss'] = raw_display['playername_avg_assists_loss'] / raw_display['teamname_avg_kills_loss']
raw_display['playername_avg_cs_share_loss'] = raw_display['playername_avg_total_cs_loss'] / raw_display['teamname_avg_total_cs_loss']
if kill_prediction > 0:
raw_display = raw_display[['playername', 'teamname', 'playername_avg_kill_share_win', 'playername_avg_death_share_win', 'playername_avg_assist_share_win', 'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
raw_display = raw_display.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%', 'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%', 'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
team_data = raw_display.drop_duplicates(subset = ['playername'])
if win_loss == "Win":
team_data['Kill_Proj'] = team_data['wKill%'] * kill_prediction
team_data['Death_Proj'] = team_data['wDeath%'] * death_prediction
team_data['Assist_Proj'] = team_data['wAssist%'] * kill_prediction
team_data = team_data[['playername', 'teamname', 'wKill%', 'wDeath%', 'wAssist%', 'wCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]
else:
team_data['Kill_Proj'] = team_data['lKill%'] * kill_prediction
team_data['Death_Proj'] = team_data['lDeath%'] * death_prediction
team_data['Assist_Proj'] = team_data['lAssist%'] * kill_prediction
team_data = team_data[['playername', 'teamname', 'lKill%', 'lDeath%', 'lAssist%', 'lCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]
else:
raw_display = raw_display[['playername', 'teamname', 'playername_avg_kill_win', 'playername_avg_death_win', 'playername_avg_assist_win', 'playername_avg_total_cs_win', 'playername_avg_kill_loss', 'playername_avg_death_loss', 'playername_avg_assist_loss', 'playername_avg_total_cs_loss']]
raw_display = raw_display.rename(columns = {'playername_avg_kill_win': 'wKill%', 'playername_avg_death_win': 'wDeath%', 'playername_avg_assist_win': 'wAssist%', 'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_loss': 'lKill%', 'playername_avg_death_loss': 'lDeath%', 'playername_avg_assist_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
team_data = raw_display.drop_duplicates(subset = ['playername'])
if win_loss == "Win":
team_data['Kill_Proj'] = team_data['wKill%']
team_data['Death_Proj'] = team_data['wDeath%']
team_data['Assist_Proj'] = team_data['wAssist%']
team_data = team_data[['playername', 'teamname', 'wKill%', 'wDeath%', 'wAssist%', 'wCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]
else:
team_data['Kill_Proj'] = team_data['lKill%']
team_data['Death_Proj'] = team_data['lDeath%']
team_data['Assist_Proj'] = team_data['lAssist%']
team_data = team_data[['playername', 'teamname', 'lKill%', 'lDeath%', 'lAssist%', 'lCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]
return team_data.dropna().reset_index(drop=True)
if st.button("Run"):
st.dataframe(init_team_data(selected_team, win_loss, kill_prediction, death_prediction, start_date, end_date).style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)