File size: 16,114 Bytes
7545b49
 
 
 
 
 
fac7ac1
7545b49
 
 
 
 
 
 
 
24a1053
 
7545b49
24a1053
 
7545b49
 
 
fac7ac1
7545b49
fac7ac1
7545b49
2536839
 
a655909
 
 
fac7ac1
 
 
 
 
 
 
 
 
b9e7e41
 
fac7ac1
 
 
 
 
a88c238
 
 
fac7ac1
 
 
 
a88c238
 
 
fac7ac1
 
a655909
 
 
 
 
 
 
 
 
 
 
 
 
cb5655c
 
 
 
a655909
 
cb5655c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53059ec
fac7ac1
7545b49
0f5bf62
 
 
 
7545b49
0f5bf62
7545b49
 
a769f8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb5655c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a655909
cb5655c
 
 
 
 
 
 
 
 
 
 
 
 
 
a655909
0e59510
7545b49
a655909
fac7ac1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import pymongo
import time
from datetime import datetime, timedelta

@st.cache_resource
def init_conn():
        
        uri = st.secrets['mongo_uri']
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client["League_of_Legends_Database"]

        current_date = datetime.now()

        collection = db["gamelogs"] 
        max_date = current_date - timedelta(days=1)
        min_date = current_date - timedelta(days=365)
        team_names = collection.distinct("teamname")
        player_names = collection.distinct("playername")

        return db, team_names, player_names, min_date, max_date
    
db, team_names, player_names, min_date, max_date = init_conn()

display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}'}

# Create sidebar container for options
with st.sidebar:
    st.header("Team Analysis Options")

    # Date filtering options
    st.subheader("Date Range")
    date_filter = st.radio(
        "Select Date Range",
        ["Last Year", "Custom Range"]
    )
    
    if date_filter == "Last Year":
        end_date = max_date
        start_date = (end_date - timedelta(days=365))
    else:
        col1, col2 = st.columns(2)
        with col1:
            start_date = st.date_input(
                "Start Date",
                value=max_date.date() - timedelta(days=30),
                min_value=min_date.date(),
                max_value=max_date.date()
            )
        with col2:
            end_date = st.date_input(
                "End Date",
                value=max_date.date(),
                min_value=min_date.date(),
                max_value=max_date.date()
            )

    selected_team = st.selectbox(
        "Select Team",
        options=team_names,
        index=team_names.index("T1") if "T1" in team_names else 0
    )
    
    st.subheader("Prediction Settings")
    win_loss = st.selectbox(
        "Select Win/Loss",
        options=["Win", "Loss"],
        index=0
    )

    game_settings = st.selectbox(
        "Predict kills/deaths or use average?",
        options=["Average", "Predict"],
        index=0
    )

    if game_settings == "Average":
        kill_prediction = 0
        death_prediction = 0
    else:
        kill_prediction = st.number_input(
            "Predicted Team Kills",
            min_value=1,
            max_value=100,
            value=20
        )
        
        death_prediction = st.number_input(
            "Predicted Team Deaths",
            min_value=1,
            max_value=100,
            value=5
        )

@st.cache_data(ttl = 60)
def init_team_data(team, win_loss, kill_prediction, death_prediction, start_date, end_date):  
        
        # Convert date objects to datetime strings in the correct format
        start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
        end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S")

        collection = db["gamelogs"] 
        cursor = collection.find({"teamname": team, "date": {"$gte": start_datetime, "$lte": end_datetime}})
    
        raw_display = pd.DataFrame(list(cursor))
        calc_columns = ['kills', 'deaths', 'assists', 'total_cs']
        league_win_stats = {}
        league_loss_stats = {}
        league_pos_win_stats = {}   
        league_pos_loss_stats = {}
        Opponent_win_allowed_stats = {}
        Opponent_loss_allowed_stats = {}
        Opponent_pos_win_allowed_stats = {}
        Opponent_pos_loss_allowed_stats = {}
        playername_win_stats = {}
        playername_loss_stats = {}
        teamname_win_stats = {}
        teamname_loss_stats = {}

        for stats in calc_columns:
            league_win_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] != 'team')].groupby('league')[stats].mean().to_dict()
            league_loss_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] != 'team')].groupby('league')[stats].mean().to_dict()
            Opponent_win_allowed_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] != 'team')].groupby('Opponent')[stats].mean().to_dict()
            Opponent_loss_allowed_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] != 'team')].groupby('Opponent')[stats].mean().to_dict()

        for stats in calc_columns:
            league_pos_win_stats[stats] = {
                league: group.groupby('position')[stats].mean().to_dict()
                for league, group in raw_display[raw_display['result'] == 1].groupby('league')
            }
            league_pos_loss_stats[stats] = {
                league: group.groupby('position')[stats].mean().to_dict()
                for league, group in raw_display[raw_display['result'] == 0].groupby('league')
            }
            
            Opponent_pos_win_allowed_stats[stats] = {
                opponent: group.groupby('position')[stats].mean().to_dict()
                for opponent, group in raw_display[raw_display['result'] == 1].groupby('Opponent')
            }
            Opponent_pos_loss_allowed_stats[stats] = {
                opponent: group.groupby('position')[stats].mean().to_dict()
                for opponent, group in raw_display[raw_display['result'] == 0].groupby('Opponent')
            }

        for stats in calc_columns:
            playername_win_stats[stats] = raw_display[raw_display['result'] == 1].groupby(['playername'])[stats].mean().to_dict()
            playername_loss_stats[stats] = raw_display[raw_display['result'] == 0].groupby(['playername'])[stats].mean().to_dict()
            teamname_win_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
            teamname_loss_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict() 

        for stat in calc_columns:

            column_name = f'league_avg_{stat}_win'
            raw_display[column_name] = raw_display.apply(
                lambda row: league_win_stats[stat].get(row['league'], 0), 
                axis=1
            )

            column_name = f'league_avg_{stat}_loss'
            raw_display[column_name] = raw_display.apply(
                lambda row: league_loss_stats[stat].get(row['league'], 0), 
                axis=1
            )

            column_name = f'Opponent_avg_{stat}_allowed_win'
            raw_display[column_name] = raw_display.apply(
                lambda row: Opponent_win_allowed_stats[stat].get(row['Opponent'], 0), 
                axis=1
            )

            column_name = f'Opponent_avg_{stat}_allowed_loss'
            raw_display[column_name] = raw_display.apply(
                lambda row: Opponent_loss_allowed_stats[stat].get(row['Opponent'], 0), 
                axis=1
            )

            column_name = f'league_pos_avg_{stat}_win'
            raw_display[column_name] = raw_display.apply(
                lambda row: league_pos_win_stats[stat].get(row['league'], {}).get(row['position'], 0), 
                axis=1
            )
            
            column_name = f'league_pos_avg_{stat}_loss'
            raw_display[column_name] = raw_display.apply(
                lambda row: league_pos_loss_stats[stat].get(row['league'], {}).get(row['position'], 0), 
                axis=1
            )

            column_name = f'Opponent_pos_avg_{stat}_allowed_win'
            raw_display[column_name] = raw_display.apply(
                lambda row: Opponent_pos_win_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0), 
                axis=1
            )

            column_name = f'Opponent_pos_avg_{stat}_allowed_loss'
            raw_display[column_name] = raw_display.apply(
                lambda row: Opponent_pos_loss_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0), 
                axis=1
            )

            column_name = f'playername_avg_{stat}_win'
            raw_display[column_name] = raw_display.apply(
                lambda row: playername_win_stats[stat].get(row['playername'], 0), 
                axis=1
            )

            column_name = f'playername_avg_{stat}_loss'
            raw_display[column_name] = raw_display.apply(
                lambda row: playername_loss_stats[stat].get(row['playername'], 0), 
                axis=1
            )

            column_name = f'teamname_avg_{stat}_win'
            raw_display[column_name] = raw_display.apply(
                lambda row: teamname_win_stats[stat].get(row['teamname'], 0), 
                axis=1
            )

            column_name = f'teamname_avg_{stat}_loss'
            raw_display[column_name] = raw_display.apply(
                lambda row: teamname_loss_stats[stat].get(row['teamname'], 0), 
                axis=1
            )

        raw_display['overall_win_kills_boost'] = raw_display['Opponent_avg_kills_allowed_win'] / raw_display['league_avg_kills_win']
        raw_display['overall_win_deaths_boost'] = raw_display['Opponent_avg_deaths_allowed_win'] / raw_display['league_avg_deaths_win']
        raw_display['overall_win_assists_boost'] = raw_display['Opponent_avg_assists_allowed_win'] / raw_display['league_avg_assists_win']
        raw_display['overall_win_total_cs_boost'] = raw_display['Opponent_avg_total_cs_allowed_win'] / raw_display['league_avg_total_cs_win']
        raw_display['overall_loss_kills_boost'] = raw_display['Opponent_avg_kills_allowed_loss'] / raw_display['league_avg_kills_loss']
        raw_display['overall_loss_deaths_boost'] = raw_display['Opponent_avg_deaths_allowed_loss'] / raw_display['league_avg_deaths_loss']
        raw_display['overall_loss_assists_boost'] = raw_display['Opponent_avg_assists_allowed_loss'] / raw_display['league_avg_assists_loss']
        raw_display['overall_loss_total_cs_boost'] = raw_display['Opponent_avg_total_cs_allowed_loss'] / raw_display['league_avg_total_cs_loss']

        raw_display['overall_win_kills_boost_pos'] = raw_display['Opponent_pos_avg_kills_allowed_win'] / raw_display['league_pos_avg_kills_win']
        raw_display['overall_win_deaths_boost_pos'] = raw_display['Opponent_pos_avg_deaths_allowed_win'] / raw_display['league_pos_avg_deaths_win']
        raw_display['overall_win_assists_boost_pos'] = raw_display['Opponent_pos_avg_assists_allowed_win'] / raw_display['league_pos_avg_assists_win']
        raw_display['overall_win_total_cs_boost_pos'] = raw_display['Opponent_pos_avg_total_cs_allowed_win'] / raw_display['league_pos_avg_total_cs_win']
        raw_display['overall_loss_kills_boost_pos'] = raw_display['Opponent_pos_avg_kills_allowed_loss'] / raw_display['league_pos_avg_kills_loss']
        raw_display['overall_loss_deaths_boost_pos'] = raw_display['Opponent_pos_avg_deaths_allowed_loss'] / raw_display['league_pos_avg_deaths_loss']
        raw_display['overall_loss_assists_boost_pos'] = raw_display['Opponent_pos_avg_assists_allowed_loss'] / raw_display['league_pos_avg_assists_loss']
        raw_display['overall_loss_total_cs_boost_pos'] = raw_display['Opponent_pos_avg_total_cs_allowed_loss'] / raw_display['league_pos_avg_total_cs_loss']

        raw_display['playername_avg_kill_share_win'] = raw_display['playername_avg_kills_win'] / raw_display['teamname_avg_kills_win']
        raw_display['playername_avg_death_share_win'] = raw_display['playername_avg_deaths_win'] / raw_display['teamname_avg_deaths_win']
        raw_display['playername_avg_assist_share_win'] = raw_display['playername_avg_assists_win'] / raw_display['teamname_avg_kills_win']
        raw_display['playername_avg_cs_share_win'] = raw_display['playername_avg_total_cs_win'] / raw_display['teamname_avg_total_cs_win']
        raw_display['playername_avg_kill_share_loss'] = raw_display['playername_avg_kills_loss'] / raw_display['teamname_avg_kills_loss']
        raw_display['playername_avg_death_share_loss'] = raw_display['playername_avg_deaths_loss'] / raw_display['teamname_avg_deaths_loss']
        raw_display['playername_avg_assist_share_loss'] = raw_display['playername_avg_assists_loss'] / raw_display['teamname_avg_kills_loss']
        raw_display['playername_avg_cs_share_loss'] = raw_display['playername_avg_total_cs_loss'] / raw_display['teamname_avg_total_cs_loss']
        if kill_prediction > 0:
            raw_display = raw_display[['playername', 'teamname', 'playername_avg_kill_share_win', 'playername_avg_death_share_win', 'playername_avg_assist_share_win', 'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
            raw_display = raw_display.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%', 'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%', 'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
            team_data = raw_display.drop_duplicates(subset = ['playername'])

            if win_loss == "Win":
                team_data['Kill_Proj'] = team_data['wKill%'] * kill_prediction
                team_data['Death_Proj'] = team_data['wDeath%'] * death_prediction
                team_data['Assist_Proj'] = team_data['wAssist%'] * kill_prediction
                team_data = team_data[['playername', 'teamname', 'wKill%', 'wDeath%', 'wAssist%', 'wCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]
            else:
                team_data['Kill_Proj'] = team_data['lKill%'] * kill_prediction
                team_data['Death_Proj'] = team_data['lDeath%'] * death_prediction
                team_data['Assist_Proj'] = team_data['lAssist%'] * kill_prediction
                team_data = team_data[['playername', 'teamname', 'lKill%', 'lDeath%', 'lAssist%', 'lCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]
        else:
            raw_display = raw_display[['playername', 'teamname', 'playername_avg_kill_win', 'playername_avg_death_win', 'playername_avg_assist_win', 'playername_avg_total_cs_win', 'playername_avg_kill_loss', 'playername_avg_death_loss', 'playername_avg_assist_loss', 'playername_avg_total_cs_loss']]
            raw_display = raw_display.rename(columns = {'playername_avg_kill_win': 'wKill%', 'playername_avg_death_win': 'wDeath%', 'playername_avg_assist_win': 'wAssist%', 'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_loss': 'lKill%', 'playername_avg_death_loss': 'lDeath%', 'playername_avg_assist_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
            team_data = raw_display.drop_duplicates(subset = ['playername'])

            if win_loss == "Win":
                team_data['Kill_Proj'] = team_data['wKill%']
                team_data['Death_Proj'] = team_data['wDeath%']
                team_data['Assist_Proj'] = team_data['wAssist%']
                team_data = team_data[['playername', 'teamname', 'wKill%', 'wDeath%', 'wAssist%', 'wCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]
            else:
                team_data['Kill_Proj'] = team_data['lKill%']
                team_data['Death_Proj'] = team_data['lDeath%']
                team_data['Assist_Proj'] = team_data['lAssist%']
                team_data = team_data[['playername', 'teamname', 'lKill%', 'lDeath%', 'lAssist%', 'lCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]

        return team_data.dropna().reset_index(drop=True)

if st.button("Run"):
    st.dataframe(init_team_data(selected_team, win_loss, kill_prediction, death_prediction, start_date, end_date).style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)