Spaces:
Running
Running
File size: 16,114 Bytes
7545b49 fac7ac1 7545b49 24a1053 7545b49 24a1053 7545b49 fac7ac1 7545b49 fac7ac1 7545b49 2536839 a655909 fac7ac1 b9e7e41 fac7ac1 a88c238 fac7ac1 a88c238 fac7ac1 a655909 cb5655c a655909 cb5655c 53059ec fac7ac1 7545b49 0f5bf62 7545b49 0f5bf62 7545b49 a769f8a cb5655c a655909 cb5655c a655909 0e59510 7545b49 a655909 fac7ac1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import pymongo
import time
from datetime import datetime, timedelta
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["League_of_Legends_Database"]
current_date = datetime.now()
collection = db["gamelogs"]
max_date = current_date - timedelta(days=1)
min_date = current_date - timedelta(days=365)
team_names = collection.distinct("teamname")
player_names = collection.distinct("playername")
return db, team_names, player_names, min_date, max_date
db, team_names, player_names, min_date, max_date = init_conn()
display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}'}
# Create sidebar container for options
with st.sidebar:
st.header("Team Analysis Options")
# Date filtering options
st.subheader("Date Range")
date_filter = st.radio(
"Select Date Range",
["Last Year", "Custom Range"]
)
if date_filter == "Last Year":
end_date = max_date
start_date = (end_date - timedelta(days=365))
else:
col1, col2 = st.columns(2)
with col1:
start_date = st.date_input(
"Start Date",
value=max_date.date() - timedelta(days=30),
min_value=min_date.date(),
max_value=max_date.date()
)
with col2:
end_date = st.date_input(
"End Date",
value=max_date.date(),
min_value=min_date.date(),
max_value=max_date.date()
)
selected_team = st.selectbox(
"Select Team",
options=team_names,
index=team_names.index("T1") if "T1" in team_names else 0
)
st.subheader("Prediction Settings")
win_loss = st.selectbox(
"Select Win/Loss",
options=["Win", "Loss"],
index=0
)
game_settings = st.selectbox(
"Predict kills/deaths or use average?",
options=["Average", "Predict"],
index=0
)
if game_settings == "Average":
kill_prediction = 0
death_prediction = 0
else:
kill_prediction = st.number_input(
"Predicted Team Kills",
min_value=1,
max_value=100,
value=20
)
death_prediction = st.number_input(
"Predicted Team Deaths",
min_value=1,
max_value=100,
value=5
)
@st.cache_data(ttl = 60)
def init_team_data(team, win_loss, kill_prediction, death_prediction, start_date, end_date):
# Convert date objects to datetime strings in the correct format
start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S")
collection = db["gamelogs"]
cursor = collection.find({"teamname": team, "date": {"$gte": start_datetime, "$lte": end_datetime}})
raw_display = pd.DataFrame(list(cursor))
calc_columns = ['kills', 'deaths', 'assists', 'total_cs']
league_win_stats = {}
league_loss_stats = {}
league_pos_win_stats = {}
league_pos_loss_stats = {}
Opponent_win_allowed_stats = {}
Opponent_loss_allowed_stats = {}
Opponent_pos_win_allowed_stats = {}
Opponent_pos_loss_allowed_stats = {}
playername_win_stats = {}
playername_loss_stats = {}
teamname_win_stats = {}
teamname_loss_stats = {}
for stats in calc_columns:
league_win_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] != 'team')].groupby('league')[stats].mean().to_dict()
league_loss_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] != 'team')].groupby('league')[stats].mean().to_dict()
Opponent_win_allowed_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] != 'team')].groupby('Opponent')[stats].mean().to_dict()
Opponent_loss_allowed_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] != 'team')].groupby('Opponent')[stats].mean().to_dict()
for stats in calc_columns:
league_pos_win_stats[stats] = {
league: group.groupby('position')[stats].mean().to_dict()
for league, group in raw_display[raw_display['result'] == 1].groupby('league')
}
league_pos_loss_stats[stats] = {
league: group.groupby('position')[stats].mean().to_dict()
for league, group in raw_display[raw_display['result'] == 0].groupby('league')
}
Opponent_pos_win_allowed_stats[stats] = {
opponent: group.groupby('position')[stats].mean().to_dict()
for opponent, group in raw_display[raw_display['result'] == 1].groupby('Opponent')
}
Opponent_pos_loss_allowed_stats[stats] = {
opponent: group.groupby('position')[stats].mean().to_dict()
for opponent, group in raw_display[raw_display['result'] == 0].groupby('Opponent')
}
for stats in calc_columns:
playername_win_stats[stats] = raw_display[raw_display['result'] == 1].groupby(['playername'])[stats].mean().to_dict()
playername_loss_stats[stats] = raw_display[raw_display['result'] == 0].groupby(['playername'])[stats].mean().to_dict()
teamname_win_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
teamname_loss_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
for stat in calc_columns:
column_name = f'league_avg_{stat}_win'
raw_display[column_name] = raw_display.apply(
lambda row: league_win_stats[stat].get(row['league'], 0),
axis=1
)
column_name = f'league_avg_{stat}_loss'
raw_display[column_name] = raw_display.apply(
lambda row: league_loss_stats[stat].get(row['league'], 0),
axis=1
)
column_name = f'Opponent_avg_{stat}_allowed_win'
raw_display[column_name] = raw_display.apply(
lambda row: Opponent_win_allowed_stats[stat].get(row['Opponent'], 0),
axis=1
)
column_name = f'Opponent_avg_{stat}_allowed_loss'
raw_display[column_name] = raw_display.apply(
lambda row: Opponent_loss_allowed_stats[stat].get(row['Opponent'], 0),
axis=1
)
column_name = f'league_pos_avg_{stat}_win'
raw_display[column_name] = raw_display.apply(
lambda row: league_pos_win_stats[stat].get(row['league'], {}).get(row['position'], 0),
axis=1
)
column_name = f'league_pos_avg_{stat}_loss'
raw_display[column_name] = raw_display.apply(
lambda row: league_pos_loss_stats[stat].get(row['league'], {}).get(row['position'], 0),
axis=1
)
column_name = f'Opponent_pos_avg_{stat}_allowed_win'
raw_display[column_name] = raw_display.apply(
lambda row: Opponent_pos_win_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
axis=1
)
column_name = f'Opponent_pos_avg_{stat}_allowed_loss'
raw_display[column_name] = raw_display.apply(
lambda row: Opponent_pos_loss_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
axis=1
)
column_name = f'playername_avg_{stat}_win'
raw_display[column_name] = raw_display.apply(
lambda row: playername_win_stats[stat].get(row['playername'], 0),
axis=1
)
column_name = f'playername_avg_{stat}_loss'
raw_display[column_name] = raw_display.apply(
lambda row: playername_loss_stats[stat].get(row['playername'], 0),
axis=1
)
column_name = f'teamname_avg_{stat}_win'
raw_display[column_name] = raw_display.apply(
lambda row: teamname_win_stats[stat].get(row['teamname'], 0),
axis=1
)
column_name = f'teamname_avg_{stat}_loss'
raw_display[column_name] = raw_display.apply(
lambda row: teamname_loss_stats[stat].get(row['teamname'], 0),
axis=1
)
raw_display['overall_win_kills_boost'] = raw_display['Opponent_avg_kills_allowed_win'] / raw_display['league_avg_kills_win']
raw_display['overall_win_deaths_boost'] = raw_display['Opponent_avg_deaths_allowed_win'] / raw_display['league_avg_deaths_win']
raw_display['overall_win_assists_boost'] = raw_display['Opponent_avg_assists_allowed_win'] / raw_display['league_avg_assists_win']
raw_display['overall_win_total_cs_boost'] = raw_display['Opponent_avg_total_cs_allowed_win'] / raw_display['league_avg_total_cs_win']
raw_display['overall_loss_kills_boost'] = raw_display['Opponent_avg_kills_allowed_loss'] / raw_display['league_avg_kills_loss']
raw_display['overall_loss_deaths_boost'] = raw_display['Opponent_avg_deaths_allowed_loss'] / raw_display['league_avg_deaths_loss']
raw_display['overall_loss_assists_boost'] = raw_display['Opponent_avg_assists_allowed_loss'] / raw_display['league_avg_assists_loss']
raw_display['overall_loss_total_cs_boost'] = raw_display['Opponent_avg_total_cs_allowed_loss'] / raw_display['league_avg_total_cs_loss']
raw_display['overall_win_kills_boost_pos'] = raw_display['Opponent_pos_avg_kills_allowed_win'] / raw_display['league_pos_avg_kills_win']
raw_display['overall_win_deaths_boost_pos'] = raw_display['Opponent_pos_avg_deaths_allowed_win'] / raw_display['league_pos_avg_deaths_win']
raw_display['overall_win_assists_boost_pos'] = raw_display['Opponent_pos_avg_assists_allowed_win'] / raw_display['league_pos_avg_assists_win']
raw_display['overall_win_total_cs_boost_pos'] = raw_display['Opponent_pos_avg_total_cs_allowed_win'] / raw_display['league_pos_avg_total_cs_win']
raw_display['overall_loss_kills_boost_pos'] = raw_display['Opponent_pos_avg_kills_allowed_loss'] / raw_display['league_pos_avg_kills_loss']
raw_display['overall_loss_deaths_boost_pos'] = raw_display['Opponent_pos_avg_deaths_allowed_loss'] / raw_display['league_pos_avg_deaths_loss']
raw_display['overall_loss_assists_boost_pos'] = raw_display['Opponent_pos_avg_assists_allowed_loss'] / raw_display['league_pos_avg_assists_loss']
raw_display['overall_loss_total_cs_boost_pos'] = raw_display['Opponent_pos_avg_total_cs_allowed_loss'] / raw_display['league_pos_avg_total_cs_loss']
raw_display['playername_avg_kill_share_win'] = raw_display['playername_avg_kills_win'] / raw_display['teamname_avg_kills_win']
raw_display['playername_avg_death_share_win'] = raw_display['playername_avg_deaths_win'] / raw_display['teamname_avg_deaths_win']
raw_display['playername_avg_assist_share_win'] = raw_display['playername_avg_assists_win'] / raw_display['teamname_avg_kills_win']
raw_display['playername_avg_cs_share_win'] = raw_display['playername_avg_total_cs_win'] / raw_display['teamname_avg_total_cs_win']
raw_display['playername_avg_kill_share_loss'] = raw_display['playername_avg_kills_loss'] / raw_display['teamname_avg_kills_loss']
raw_display['playername_avg_death_share_loss'] = raw_display['playername_avg_deaths_loss'] / raw_display['teamname_avg_deaths_loss']
raw_display['playername_avg_assist_share_loss'] = raw_display['playername_avg_assists_loss'] / raw_display['teamname_avg_kills_loss']
raw_display['playername_avg_cs_share_loss'] = raw_display['playername_avg_total_cs_loss'] / raw_display['teamname_avg_total_cs_loss']
if kill_prediction > 0:
raw_display = raw_display[['playername', 'teamname', 'playername_avg_kill_share_win', 'playername_avg_death_share_win', 'playername_avg_assist_share_win', 'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
raw_display = raw_display.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%', 'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%', 'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
team_data = raw_display.drop_duplicates(subset = ['playername'])
if win_loss == "Win":
team_data['Kill_Proj'] = team_data['wKill%'] * kill_prediction
team_data['Death_Proj'] = team_data['wDeath%'] * death_prediction
team_data['Assist_Proj'] = team_data['wAssist%'] * kill_prediction
team_data = team_data[['playername', 'teamname', 'wKill%', 'wDeath%', 'wAssist%', 'wCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]
else:
team_data['Kill_Proj'] = team_data['lKill%'] * kill_prediction
team_data['Death_Proj'] = team_data['lDeath%'] * death_prediction
team_data['Assist_Proj'] = team_data['lAssist%'] * kill_prediction
team_data = team_data[['playername', 'teamname', 'lKill%', 'lDeath%', 'lAssist%', 'lCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]
else:
raw_display = raw_display[['playername', 'teamname', 'playername_avg_kill_win', 'playername_avg_death_win', 'playername_avg_assist_win', 'playername_avg_total_cs_win', 'playername_avg_kill_loss', 'playername_avg_death_loss', 'playername_avg_assist_loss', 'playername_avg_total_cs_loss']]
raw_display = raw_display.rename(columns = {'playername_avg_kill_win': 'wKill%', 'playername_avg_death_win': 'wDeath%', 'playername_avg_assist_win': 'wAssist%', 'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_loss': 'lKill%', 'playername_avg_death_loss': 'lDeath%', 'playername_avg_assist_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
team_data = raw_display.drop_duplicates(subset = ['playername'])
if win_loss == "Win":
team_data['Kill_Proj'] = team_data['wKill%']
team_data['Death_Proj'] = team_data['wDeath%']
team_data['Assist_Proj'] = team_data['wAssist%']
team_data = team_data[['playername', 'teamname', 'wKill%', 'wDeath%', 'wAssist%', 'wCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]
else:
team_data['Kill_Proj'] = team_data['lKill%']
team_data['Death_Proj'] = team_data['lDeath%']
team_data['Assist_Proj'] = team_data['lAssist%']
team_data = team_data[['playername', 'teamname', 'lKill%', 'lDeath%', 'lAssist%', 'lCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]
return team_data.dropna().reset_index(drop=True)
if st.button("Run"):
st.dataframe(init_team_data(selected_team, win_loss, kill_prediction, death_prediction, start_date, end_date).style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True) |