James McCool
Add prediction settings to app.py for match format selection. Introduced a new subheader and selectbox for users to choose between BO1, BO3, or BO5 formats, enhancing the user interface and improving the prediction process.
f0e935b
raw
history blame
20.7 kB
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import pymongo
import time
from datetime import datetime, timedelta
from scipy import stats
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["League_of_Legends_Database"]
current_date = datetime.now()
collection = db["gamelogs"]
max_date = current_date - timedelta(days=1)
min_date = current_date - timedelta(days=365)
team_names = collection.distinct("teamname")
player_names = collection.distinct("playername")
return db, team_names, player_names, min_date, max_date
db, team_names, player_names, min_date, max_date = init_conn()
display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}'}
# Create sidebar container for options
with st.sidebar:
st.header("Team Analysis Options")
# Date filtering options
st.subheader("Date Range")
date_filter = st.radio(
"Select Date Range",
["Last Year", "Custom Range"]
)
if date_filter == "Last Year":
end_date = max_date
start_date = (end_date - timedelta(days=365))
else:
col1, col2 = st.columns(2)
with col1:
start_date = st.date_input(
"Start Date",
value=max_date.date() - timedelta(days=30),
min_value=min_date.date(),
max_value=max_date.date()
)
with col2:
end_date = st.date_input(
"End Date",
value=max_date.date(),
min_value=min_date.date(),
max_value=max_date.date()
)
col1, col2 = st.columns(2)
with col1:
selected_team = st.selectbox(
"Select Team",
options=team_names,
index=team_names.index("T1") if "T1" in team_names else 0
)
with col2:
selected_opponent = st.selectbox(
"Select Opponent",
options=team_names,
index=team_names.index("T1") if "T1" in team_names else 0
)
st.subheader("Prediction Settings")
num_games = st.selectbox(
"Is the match BO1, BO3, or BO5?",
options=["BO1", "BO3", "BO5"],
index=0
)
col1, col2 = st.columns(2)
with col1:
win_loss = st.selectbox(
"Select Win/Loss",
options=["Win", "Loss"],
index=0
)
with col2:
game_settings = st.selectbox(
"Predict kills/deaths or use average?",
options=["Average", "Predict"],
index=0
)
if game_settings == "Average":
kill_prediction = 0
death_prediction = 0
else:
col1, col2 = st.columns(2)
with col1:
kill_prediction = st.number_input(
"Predicted Team Kills",
min_value=1,
max_value=100,
value=20
)
with col2:
death_prediction = st.number_input(
"Predicted Team Deaths",
min_value=1,
max_value=100,
value=5
)
@st.cache_data(ttl = 60)
def simulate_stats(row, num_sims=1000):
"""Simulate stats using normal distribution"""
# Using coefficient of variation of 0.3 to generate reasonable standard deviations
cv = 0.3
percentiles = [10, 25, 50, 75, 90]
results = {}
for stat in ['Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']:
mean = row[stat]
std = mean * cv # Using coefficient of variation to determine std
sims = stats.norm.rvs(loc=mean, scale=std, size=num_sims)
# Ensure no negative values
sims = np.maximum(sims, 0)
results[stat] = np.percentile(sims, percentiles)
return pd.Series(results)
@st.cache_data(ttl = 60)
def init_team_data(team, opponent, win_loss, kill_prediction, death_prediction, start_date, end_date):
# Convert date objects to datetime strings in the correct format
start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S")
collection = db["gamelogs"]
cursor = collection.find({"teamname": team, "date": {"$gte": start_datetime, "$lte": end_datetime}})
raw_display = pd.DataFrame(list(cursor))
cursor = collection.find({"date": {"$gte": start_datetime, "$lte": end_datetime}})
raw_opponent = pd.DataFrame(list(cursor))
tables_to_loop = [raw_display, raw_opponent]
for loop in range(len(tables_to_loop)):
tables = tables_to_loop[loop]
calc_columns = ['kills', 'deaths', 'assists', 'total_cs']
league_pos_win_stats = {}
league_pos_loss_stats = {}
Opponent_pos_win_allowed_stats = {}
Opponent_pos_loss_allowed_stats = {}
playername_win_stats = {}
playername_loss_stats = {}
teamname_win_stats = {}
teamname_loss_stats = {}
if loop == 0:
for stats in calc_columns:
playername_win_stats[stats] = tables[tables['result'] == 1].groupby(['playername'])[stats].mean().to_dict()
playername_loss_stats[stats] = tables[tables['result'] == 0].groupby(['playername'])[stats].mean().to_dict()
teamname_win_stats[stats] = tables[(tables['result'] == 1) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
teamname_loss_stats[stats] = tables[(tables['result'] == 0) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
for stat in calc_columns:
column_name = f'playername_avg_{stat}_win'
tables[column_name] = tables.apply(
lambda row: playername_win_stats[stat].get(row['playername'], 0),
axis=1
)
column_name = f'playername_avg_{stat}_loss'
tables[column_name] = tables.apply(
lambda row: playername_loss_stats[stat].get(row['playername'], 0),
axis=1
)
column_name = f'teamname_avg_{stat}_win'
tables[column_name] = tables.apply(
lambda row: teamname_win_stats[stat].get(row['teamname'], 0),
axis=1
)
column_name = f'teamname_avg_{stat}_loss'
tables[column_name] = tables.apply(
lambda row: teamname_loss_stats[stat].get(row['teamname'], 0),
axis=1
)
tables['playername_avg_kill_share_win'] = tables['playername_avg_kills_win'] / tables['teamname_avg_kills_win']
tables['playername_avg_death_share_win'] = tables['playername_avg_deaths_win'] / tables['teamname_avg_deaths_win']
tables['playername_avg_assist_share_win'] = tables['playername_avg_assists_win'] / tables['teamname_avg_kills_win']
tables['playername_avg_cs_share_win'] = tables['playername_avg_total_cs_win'] / tables['teamname_avg_total_cs_win']
tables['playername_avg_kill_share_loss'] = tables['playername_avg_kills_loss'] / tables['teamname_avg_kills_loss']
tables['playername_avg_death_share_loss'] = tables['playername_avg_deaths_loss'] / tables['teamname_avg_deaths_loss']
tables['playername_avg_assist_share_loss'] = tables['playername_avg_assists_loss'] / tables['teamname_avg_kills_loss']
tables['playername_avg_cs_share_loss'] = tables['playername_avg_total_cs_loss'] / tables['teamname_avg_total_cs_loss']
player_tables = tables
else:
for stats in calc_columns:
league_pos_win_stats[stats] = {
league: group.groupby('position')[stats].mean().to_dict()
for league, group in tables[tables['result'] == 1].groupby('league')
}
league_pos_loss_stats[stats] = {
league: group.groupby('position')[stats].mean().to_dict()
for league, group in tables[tables['result'] == 0].groupby('league')
}
Opponent_pos_win_allowed_stats[stats] = {
opponent: group.groupby('position')[stats].mean().to_dict()
for opponent, group in tables[tables['result'] == 1].groupby('Opponent')
}
Opponent_pos_loss_allowed_stats[stats] = {
opponent: group.groupby('position')[stats].mean().to_dict()
for opponent, group in tables[tables['result'] == 0].groupby('Opponent')
}
for stat in calc_columns:
column_name = f'league_pos_avg_{stat}_win'
tables[column_name] = tables.apply(
lambda row: league_pos_win_stats[stat].get(row['league'], {}).get(row['position'], 0),
axis=1
)
column_name = f'league_pos_avg_{stat}_loss'
tables[column_name] = tables.apply(
lambda row: league_pos_loss_stats[stat].get(row['league'], {}).get(row['position'], 0),
axis=1
)
column_name = f'Opponent_pos_avg_{stat}_allowed_win'
tables[column_name] = tables.apply(
lambda row: Opponent_pos_win_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
axis=1
)
column_name = f'Opponent_pos_avg_{stat}_allowed_loss'
tables[column_name] = tables.apply(
lambda row: Opponent_pos_loss_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
axis=1
)
tables = tables[tables['Opponent'] == opponent]
tables['overall_win_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_win'] / tables['league_pos_avg_kills_win']
tables['overall_win_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_win'] / tables['league_pos_avg_deaths_win']
tables['overall_win_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_win'] / tables['league_pos_avg_assists_win']
tables['overall_win_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_win'] / tables['league_pos_avg_total_cs_win']
tables['overall_loss_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_loss'] / tables['league_pos_avg_kills_loss']
tables['overall_loss_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_loss'] / tables['league_pos_avg_deaths_loss']
tables['overall_loss_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_loss'] / tables['league_pos_avg_assists_loss']
tables['overall_loss_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_loss'] / tables['league_pos_avg_total_cs_loss']
opp_tables = tables
opp_pos_kills_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_kills_boost_pos']))
opp_pos_deaths_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_deaths_boost_pos']))
opp_pos_assists_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_assists_boost_pos']))
opp_pos_cs_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_total_cs_boost_pos']))
opp_pos_kills_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_kills_boost_pos']))
opp_pos_deaths_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_deaths_boost_pos']))
opp_pos_assists_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_assists_boost_pos']))
opp_pos_cs_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_total_cs_boost_pos']))
opp_boosts = pd.DataFrame({
'opp_pos_kills_boost_win': opp_pos_kills_boost_win,
'opp_pos_deaths_boost_win': opp_pos_deaths_boost_win,
'opp_pos_assists_boost_win': opp_pos_assists_boost_win,
'opp_pos_cs_boost_win': opp_pos_cs_boost_win,
'opp_pos_kills_boost_loss': opp_pos_kills_boost_loss,
'opp_pos_deaths_boost_loss': opp_pos_deaths_boost_loss,
'opp_pos_assists_boost_loss': opp_pos_assists_boost_loss,
'opp_pos_cs_boost_loss': opp_pos_cs_boost_loss
}).set_index(pd.Index(list(opp_pos_kills_boost_win.keys()), name='position'))
if kill_prediction > 0:
player_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kill_share_win', 'playername_avg_death_share_win','playername_avg_assist_share_win',
'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
player_tables = player_tables.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%',
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%',
'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
team_data = player_tables.drop_duplicates(subset = ['playername'])
if win_loss == "Win":
team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1) * kill_prediction
team_data['Death_Proj'] = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1) * death_prediction
team_data['Assist_Proj'] = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1) * kill_prediction
team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1)
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
else:
team_data['Kill_Proj'] = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1) * kill_prediction
team_data['Death_Proj'] = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1) * death_prediction
team_data['Assist_Proj'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1) * kill_prediction
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
else:
player_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kills_win', 'playername_avg_deaths_win', 'playername_avg_assists_win', 'playername_avg_total_cs_win',
'playername_avg_kills_loss', 'playername_avg_deaths_loss', 'playername_avg_assists_loss', 'playername_avg_total_cs_loss']]
player_tables = player_tables.rename(columns = {'playername_avg_kills_win': 'wKill%', 'playername_avg_deaths_win': 'wDeath%', 'playername_avg_assists_win': 'wAssist%',
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kills_loss': 'lKill%', 'playername_avg_deaths_loss': 'lDeath%',
'playername_avg_assists_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
team_data = player_tables.drop_duplicates(subset = ['playername'])
if win_loss == "Win":
team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1)
team_data['Death_Proj'] = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1)
team_data['Assist_Proj'] = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1)
team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1)
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
else:
team_data['Kill_Proj'] = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1)
team_data['Death_Proj'] = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1)
team_data['Assist_Proj'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1)
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
return team_data.dropna().set_index('playername'), opp_boosts
if st.button("Run"):
team_data, opp_boost = init_team_data(selected_team, selected_opponent, win_loss, kill_prediction, death_prediction, start_date, end_date)
# Create simulated percentiles
sim_results = []
for idx, row in team_data.iterrows():
percentiles = simulate_stats(row)
sim_results.append({
'Player': idx,
'Position': row['position'],
'Stat': 'Kills',
'10%': percentiles['Kill_Proj'][0],
'25%': percentiles['Kill_Proj'][1],
'50%': percentiles['Kill_Proj'][2],
'75%': percentiles['Kill_Proj'][3],
'90%': percentiles['Kill_Proj'][4]
})
# Repeat for other stats
for stat, name in [('Death_Proj', 'Deaths'), ('Assist_Proj', 'Assists'), ('CS_Proj', 'CS')]:
sim_results.append({
'Player': idx,
'Position': row['position'],
'Stat': name,
'10%': percentiles[stat][0],
'25%': percentiles[stat][1],
'50%': percentiles[stat][2],
'75%': percentiles[stat][3],
'90%': percentiles[stat][4]
})
sim_df = pd.DataFrame(sim_results)
tab1, tab2 = st.tabs(["Team Data", "Opponent Data"])
with tab1:
st.dataframe(team_data.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)
with tab2:
st.dataframe(opp_boost.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
unique_players = sim_df['Player'].unique().tolist()
player_tabs = st.tabs(unique_players)
for player, tab in zip(unique_players, player_tabs):
with tab:
player_data = sim_df[sim_df['Player'] == player]
st.dataframe(
player_data[['Stat', '10%', '25%', '50%', '75%', '90%']]
.style.format(precision=2),
use_container_width=True
)