File size: 20,707 Bytes
7545b49
 
 
 
 
 
fac7ac1
6244ceb
7545b49
 
 
 
 
 
 
 
24a1053
 
7545b49
24a1053
 
7545b49
 
 
fac7ac1
7545b49
fac7ac1
7545b49
2536839
 
a655909
 
 
fac7ac1
 
 
 
 
 
 
 
 
b9e7e41
 
fac7ac1
 
 
 
 
a88c238
 
 
fac7ac1
 
 
 
a88c238
 
 
fac7ac1
 
94f8ddd
 
 
 
 
 
 
 
 
 
 
 
 
f0e935b
 
 
 
 
 
 
4b70cc2
94f8ddd
 
 
 
 
 
 
 
 
 
 
 
 
a655909
cb5655c
 
 
 
94f8ddd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb5655c
6244ceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53059ec
4b70cc2
7545b49
0f5bf62
 
 
 
7545b49
0f5bf62
7545b49
a769f8a
30408c9
4b70cc2
 
46a3d32
 
 
 
4b70cc2
 
 
 
 
 
 
 
 
 
46a3d32
45307d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b70cc2
45307d2
4b70cc2
45307d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b70cc2
45307d2
 
 
 
 
 
 
 
46e893a
 
 
 
 
 
 
 
 
 
a769f8a
cb5655c
4b70cc2
71875ff
4b70cc2
71875ff
 
4b70cc2
cb5655c
 
575b2cb
 
 
f268eb0
55ed614
cb5655c
575b2cb
 
 
f268eb0
55ed614
a655909
4b70cc2
71875ff
4b70cc2
71875ff
 
4b70cc2
cb5655c
 
f268eb0
 
 
 
55ed614
cb5655c
f268eb0
 
 
 
55ed614
a655909
46e893a
7545b49
a655909
46e893a
6244ceb
 
 
 
 
 
 
 
 
e3cbf81
 
 
 
 
6244ceb
 
 
 
 
 
 
e3cbf81
 
 
 
 
6244ceb
 
 
 
46e893a
 
 
 
6244ceb
 
9a17dab
cf9d108
 
 
 
 
 
6313632
65b3735
cf9d108
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import pymongo
import time
from datetime import datetime, timedelta
from scipy import stats

@st.cache_resource
def init_conn():
        
        uri = st.secrets['mongo_uri']
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client["League_of_Legends_Database"]

        current_date = datetime.now()

        collection = db["gamelogs"] 
        max_date = current_date - timedelta(days=1)
        min_date = current_date - timedelta(days=365)
        team_names = collection.distinct("teamname")
        player_names = collection.distinct("playername")

        return db, team_names, player_names, min_date, max_date
    
db, team_names, player_names, min_date, max_date = init_conn()

display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}'}

# Create sidebar container for options
with st.sidebar:
    st.header("Team Analysis Options")

    # Date filtering options
    st.subheader("Date Range")
    date_filter = st.radio(
        "Select Date Range",
        ["Last Year", "Custom Range"]
    )
    
    if date_filter == "Last Year":
        end_date = max_date
        start_date = (end_date - timedelta(days=365))
    else:
        col1, col2 = st.columns(2)
        with col1:
            start_date = st.date_input(
                "Start Date",
                value=max_date.date() - timedelta(days=30),
                min_value=min_date.date(),
                max_value=max_date.date()
            )
        with col2:
            end_date = st.date_input(
                "End Date",
                value=max_date.date(),
                min_value=min_date.date(),
                max_value=max_date.date()
            )

    col1, col2 = st.columns(2)
    with col1:
        selected_team = st.selectbox(
            "Select Team",
            options=team_names,
            index=team_names.index("T1") if "T1" in team_names else 0
        )
    with col2:
        selected_opponent = st.selectbox(
            "Select Opponent",
            options=team_names,
            index=team_names.index("T1") if "T1" in team_names else 0
        )

    st.subheader("Prediction Settings")
    num_games = st.selectbox(
        "Is the match BO1, BO3, or BO5?",
        options=["BO1", "BO3", "BO5"],
        index=0
    )
    
    col1, col2 = st.columns(2)
    with col1:
        win_loss = st.selectbox(
            "Select Win/Loss",
            options=["Win", "Loss"],
            index=0
        )
    with col2:
        game_settings = st.selectbox(
            "Predict kills/deaths or use average?",
            options=["Average", "Predict"],
            index=0
        )

    if game_settings == "Average":
        kill_prediction = 0
        death_prediction = 0
    else:
        col1, col2 = st.columns(2)
        with col1:
            kill_prediction = st.number_input(
                "Predicted Team Kills",
                min_value=1,
                max_value=100,
                value=20
            )
        with col2:
            death_prediction = st.number_input(
                "Predicted Team Deaths",
                min_value=1,
                max_value=100,
                value=5
            )

@st.cache_data(ttl = 60)
def simulate_stats(row, num_sims=1000):
    """Simulate stats using normal distribution"""
    # Using coefficient of variation of 0.3 to generate reasonable standard deviations
    cv = 0.3
    percentiles = [10, 25, 50, 75, 90]
    
    results = {}
    for stat in ['Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']:
        mean = row[stat]
        std = mean * cv  # Using coefficient of variation to determine std
        sims = stats.norm.rvs(loc=mean, scale=std, size=num_sims)
        # Ensure no negative values
        sims = np.maximum(sims, 0)
        results[stat] = np.percentile(sims, percentiles)
    
    return pd.Series(results)

@st.cache_data(ttl = 60)
def init_team_data(team, opponent, win_loss, kill_prediction, death_prediction, start_date, end_date):  
        
        # Convert date objects to datetime strings in the correct format
        start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
        end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S")

        collection = db["gamelogs"] 
        cursor = collection.find({"teamname": team, "date": {"$gte": start_datetime, "$lte": end_datetime}})
        raw_display = pd.DataFrame(list(cursor))

        cursor = collection.find({"date": {"$gte": start_datetime, "$lte": end_datetime}})
        raw_opponent = pd.DataFrame(list(cursor))

        tables_to_loop = [raw_display, raw_opponent]

        for loop in range(len(tables_to_loop)):
            tables = tables_to_loop[loop]
            calc_columns = ['kills', 'deaths', 'assists', 'total_cs']
            league_pos_win_stats = {}   
            league_pos_loss_stats = {}
            Opponent_pos_win_allowed_stats = {}
            Opponent_pos_loss_allowed_stats = {}
            playername_win_stats = {}
            playername_loss_stats = {}
            teamname_win_stats = {}
            teamname_loss_stats = {}

            if loop == 0:

                for stats in calc_columns:
                    playername_win_stats[stats] = tables[tables['result'] == 1].groupby(['playername'])[stats].mean().to_dict()
                    playername_loss_stats[stats] = tables[tables['result'] == 0].groupby(['playername'])[stats].mean().to_dict()
                    teamname_win_stats[stats] = tables[(tables['result'] == 1) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
                    teamname_loss_stats[stats] = tables[(tables['result'] == 0) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict() 

                for stat in calc_columns:

                    column_name = f'playername_avg_{stat}_win'
                    tables[column_name] = tables.apply(
                        lambda row: playername_win_stats[stat].get(row['playername'], 0), 
                        axis=1
                    )

                    column_name = f'playername_avg_{stat}_loss'
                    tables[column_name] = tables.apply(
                        lambda row: playername_loss_stats[stat].get(row['playername'], 0), 
                        axis=1
                    )

                    column_name = f'teamname_avg_{stat}_win'
                    tables[column_name] = tables.apply(
                        lambda row: teamname_win_stats[stat].get(row['teamname'], 0), 
                        axis=1
                    )

                    column_name = f'teamname_avg_{stat}_loss'
                    tables[column_name] = tables.apply(
                        lambda row: teamname_loss_stats[stat].get(row['teamname'], 0), 
                        axis=1
                    )
            
                tables['playername_avg_kill_share_win'] = tables['playername_avg_kills_win'] / tables['teamname_avg_kills_win']
                tables['playername_avg_death_share_win'] = tables['playername_avg_deaths_win'] / tables['teamname_avg_deaths_win']
                tables['playername_avg_assist_share_win'] = tables['playername_avg_assists_win'] / tables['teamname_avg_kills_win']
                tables['playername_avg_cs_share_win'] = tables['playername_avg_total_cs_win'] / tables['teamname_avg_total_cs_win']
                tables['playername_avg_kill_share_loss'] = tables['playername_avg_kills_loss'] / tables['teamname_avg_kills_loss']
                tables['playername_avg_death_share_loss'] = tables['playername_avg_deaths_loss'] / tables['teamname_avg_deaths_loss']
                tables['playername_avg_assist_share_loss'] = tables['playername_avg_assists_loss'] / tables['teamname_avg_kills_loss']
                tables['playername_avg_cs_share_loss'] = tables['playername_avg_total_cs_loss'] / tables['teamname_avg_total_cs_loss']
                player_tables = tables

            else:

                for stats in calc_columns:
                    league_pos_win_stats[stats] = {
                        league: group.groupby('position')[stats].mean().to_dict()
                        for league, group in tables[tables['result'] == 1].groupby('league')
                    }
                    league_pos_loss_stats[stats] = {
                        league: group.groupby('position')[stats].mean().to_dict()
                        for league, group in tables[tables['result'] == 0].groupby('league')
                    }
                    
                    Opponent_pos_win_allowed_stats[stats] = {
                        opponent: group.groupby('position')[stats].mean().to_dict()
                        for opponent, group in tables[tables['result'] == 1].groupby('Opponent')
                    }
                    Opponent_pos_loss_allowed_stats[stats] = {
                        opponent: group.groupby('position')[stats].mean().to_dict()
                        for opponent, group in tables[tables['result'] == 0].groupby('Opponent')
                    }

                for stat in calc_columns:

                    column_name = f'league_pos_avg_{stat}_win'
                    tables[column_name] = tables.apply(
                        lambda row: league_pos_win_stats[stat].get(row['league'], {}).get(row['position'], 0), 
                        axis=1
                    )
                    
                    column_name = f'league_pos_avg_{stat}_loss'
                    tables[column_name] = tables.apply(
                        lambda row: league_pos_loss_stats[stat].get(row['league'], {}).get(row['position'], 0), 
                        axis=1
                    )

                    column_name = f'Opponent_pos_avg_{stat}_allowed_win'
                    tables[column_name] = tables.apply(
                        lambda row: Opponent_pos_win_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0), 
                        axis=1
                    )

                    column_name = f'Opponent_pos_avg_{stat}_allowed_loss'
                    tables[column_name] = tables.apply(
                        lambda row: Opponent_pos_loss_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0), 
                        axis=1
                    )
                
                tables = tables[tables['Opponent'] == opponent]

                tables['overall_win_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_win'] / tables['league_pos_avg_kills_win']
                tables['overall_win_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_win'] / tables['league_pos_avg_deaths_win']
                tables['overall_win_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_win'] / tables['league_pos_avg_assists_win']
                tables['overall_win_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_win'] / tables['league_pos_avg_total_cs_win']
                tables['overall_loss_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_loss'] / tables['league_pos_avg_kills_loss']
                tables['overall_loss_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_loss'] / tables['league_pos_avg_deaths_loss']
                tables['overall_loss_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_loss'] / tables['league_pos_avg_assists_loss']
                tables['overall_loss_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_loss'] / tables['league_pos_avg_total_cs_loss']
                
                opp_tables = tables
                opp_pos_kills_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_kills_boost_pos']))
                opp_pos_deaths_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_deaths_boost_pos']))
                opp_pos_assists_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_assists_boost_pos']))
                opp_pos_cs_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_total_cs_boost_pos']))
                opp_pos_kills_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_kills_boost_pos']))
                opp_pos_deaths_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_deaths_boost_pos']))
                opp_pos_assists_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_assists_boost_pos']))
                opp_pos_cs_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_total_cs_boost_pos']))
                opp_boosts = pd.DataFrame({
                    'opp_pos_kills_boost_win': opp_pos_kills_boost_win,
                    'opp_pos_deaths_boost_win': opp_pos_deaths_boost_win,
                    'opp_pos_assists_boost_win': opp_pos_assists_boost_win,
                    'opp_pos_cs_boost_win': opp_pos_cs_boost_win,
                    'opp_pos_kills_boost_loss': opp_pos_kills_boost_loss,
                    'opp_pos_deaths_boost_loss': opp_pos_deaths_boost_loss,
                    'opp_pos_assists_boost_loss': opp_pos_assists_boost_loss,
                    'opp_pos_cs_boost_loss': opp_pos_cs_boost_loss
                }).set_index(pd.Index(list(opp_pos_kills_boost_win.keys()), name='position'))

        if kill_prediction > 0:
            player_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kill_share_win', 'playername_avg_death_share_win','playername_avg_assist_share_win',
                                       'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
            player_tables = player_tables.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%',
                                                        'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%',
                                                        'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
            team_data = player_tables.drop_duplicates(subset = ['playername'])

            if win_loss == "Win":
                team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1) * kill_prediction
                team_data['Death_Proj'] = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1) * death_prediction
                team_data['Assist_Proj'] = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1) * kill_prediction
                team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1)
                team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
            else:
                team_data['Kill_Proj'] = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1) * kill_prediction
                team_data['Death_Proj'] = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1) * death_prediction
                team_data['Assist_Proj'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1) * kill_prediction
                team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
                team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
        else:
            player_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kills_win', 'playername_avg_deaths_win', 'playername_avg_assists_win', 'playername_avg_total_cs_win',
                                       'playername_avg_kills_loss', 'playername_avg_deaths_loss', 'playername_avg_assists_loss', 'playername_avg_total_cs_loss']]
            player_tables = player_tables.rename(columns = {'playername_avg_kills_win': 'wKill%', 'playername_avg_deaths_win': 'wDeath%', 'playername_avg_assists_win': 'wAssist%',
                                                        'playername_avg_total_cs_win': 'wCS', 'playername_avg_kills_loss': 'lKill%', 'playername_avg_deaths_loss': 'lDeath%',
                                                        'playername_avg_assists_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
            team_data = player_tables.drop_duplicates(subset = ['playername'])

            if win_loss == "Win":
                team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1)
                team_data['Death_Proj'] = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1)
                team_data['Assist_Proj'] = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1)
                team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1)
                team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
            else:
                team_data['Kill_Proj'] = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1)
                team_data['Death_Proj'] = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1)
                team_data['Assist_Proj'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1)
                team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
                team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]

        return team_data.dropna().set_index('playername'), opp_boosts

if st.button("Run"):
    team_data, opp_boost = init_team_data(selected_team, selected_opponent, win_loss, kill_prediction, death_prediction, start_date, end_date)

    # Create simulated percentiles
    sim_results = []
    for idx, row in team_data.iterrows():
        percentiles = simulate_stats(row)
        sim_results.append({
            'Player': idx,
            'Position': row['position'],
            'Stat': 'Kills',
            '10%': percentiles['Kill_Proj'][0],
            '25%': percentiles['Kill_Proj'][1],
            '50%': percentiles['Kill_Proj'][2],
            '75%': percentiles['Kill_Proj'][3],
            '90%': percentiles['Kill_Proj'][4]
        })
        # Repeat for other stats
        for stat, name in [('Death_Proj', 'Deaths'), ('Assist_Proj', 'Assists'), ('CS_Proj', 'CS')]:
            sim_results.append({
                'Player': idx,
                'Position': row['position'],
                'Stat': name,
                '10%': percentiles[stat][0],
                '25%': percentiles[stat][1],
                '50%': percentiles[stat][2],
                '75%': percentiles[stat][3],
                '90%': percentiles[stat][4]
            })
    
    sim_df = pd.DataFrame(sim_results)

    tab1, tab2 = st.tabs(["Team Data", "Opponent Data"])
    with tab1:
        st.dataframe(team_data.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)
    with tab2:
        st.dataframe(opp_boost.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)

    unique_players = sim_df['Player'].unique().tolist()
    player_tabs = st.tabs(unique_players)
    
    for player, tab in zip(unique_players, player_tabs):
        with tab:
            player_data = sim_df[sim_df['Player'] == player]
            st.dataframe(
                player_data[['Stat', '10%', '25%', '50%', '75%', '90%']]
                .style.format(precision=2),
                use_container_width=True
            )