Spaces:
Running
Running
James McCool
Enhance date filtering options in team analysis. Added functionality to select date ranges for data analysis, including a "Last Year" option and a custom date range input. Updated init_team_data function to filter game logs based on selected dates, improving data relevance for analysis.
fac7ac1
import streamlit as st | |
st.set_page_config(layout="wide") | |
import numpy as np | |
import pandas as pd | |
import pymongo | |
import time | |
from datetime import datetime, timedelta | |
def init_conn(): | |
uri = st.secrets['mongo_uri'] | |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) | |
db = client["League_of_Legends_Database"] | |
collection = db["gamelogs"] | |
min_date = collection.find_one({}, sort=[("date", 1)])["date"] | |
max_date = collection.find_one({}, sort=[("date", -1)])["date"] | |
team_names = collection.distinct("teamname") | |
player_names = collection.distinct("playername") | |
return db, team_names, player_names, min_date, max_date | |
db, team_names, player_names, min_date, max_date = init_conn() | |
display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}'} | |
# Create sidebar container for options | |
with st.sidebar: | |
st.header("Team Analysis Options") | |
# Date filtering options | |
st.subheader("Date Range") | |
date_filter = st.radio( | |
"Select Date Range", | |
["Last Year", "Custom Range"] | |
) | |
if date_filter == "Last Year": | |
end_date = max_date | |
start_date = end_date - timedelta(days=365) | |
else: | |
col1, col2 = st.columns(2) | |
with col1: | |
start_date = st.date_input( | |
"Start Date", | |
value=max_date - timedelta(days=365), | |
min_value=min_date, | |
max_value=max_date | |
) | |
with col2: | |
end_date = st.date_input( | |
"End Date", | |
value=max_date, | |
min_value=min_date, | |
max_value=max_date | |
) | |
selected_team = st.selectbox( | |
"Select Team", | |
options=team_names, | |
index=team_names.index("T1") if "T1" in team_names else 0 | |
) | |
st.subheader("Prediction Settings") | |
win_loss = st.selectbox( | |
"Select Win/Loss", | |
options=["Win", "Loss"], | |
index=0 | |
) | |
kill_prediction = st.number_input( | |
"Predicted Team Kills", | |
min_value=0, | |
max_value=100, | |
value=20 | |
) | |
death_prediction = st.number_input( | |
"Predicted Team Deaths", | |
min_value=0, | |
max_value=100, | |
value=5 | |
) | |
def init_team_data(team, win_loss, kill_prediction, death_prediction, start_date, end_date): | |
collection = db["gamelogs"] | |
cursor = collection.find({"teamname": team, "date": {"$gte": start_date, "$lte": end_date}}) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['playername', 'teamname', 'playername_avg_kill_share_win', 'playername_avg_death_share_win', 'playername_avg_assist_share_win', 'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']] | |
raw_display = raw_display.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%', 'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%', 'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'}) | |
team_data = raw_display.drop_duplicates(subset = ['playername']) | |
if win_loss == "Win": | |
team_data['Kill_Proj'] = team_data['wKill%'] * kill_prediction | |
team_data['Death_Proj'] = team_data['wDeath%'] * death_prediction | |
team_data['Assist_Proj'] = team_data['wAssist%'] * kill_prediction | |
team_data = team_data[['playername', 'teamname', 'wKill%', 'wDeath%', 'wAssist%', 'wCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']] | |
else: | |
team_data['Kill_Proj'] = team_data['lKill%'] * kill_prediction | |
team_data['Death_Proj'] = team_data['lDeath%'] * death_prediction | |
team_data['Assist_Proj'] = team_data['lAssist%'] * kill_prediction | |
team_data = team_data[['playername', 'teamname', 'lKill%', 'lDeath%', 'lAssist%', 'lCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']] | |
return team_data.dropna().reset_index(drop=True) | |
if st.button("Run"): | |
st.dataframe(init_team_data(selected_team, win_loss, kill_prediction, death_prediction, start_date, end_date).style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True) |