Spaces:
Running
Running
import streamlit as st | |
st.set_page_config(layout="wide") | |
import numpy as np | |
import pandas as pd | |
import pymongo | |
import time | |
from datetime import datetime, timedelta | |
from scipy import stats | |
def init_conn(): | |
uri = st.secrets['mongo_uri'] | |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) | |
db = client["League_of_Legends_Database"] | |
return db | |
def init_data(): | |
current_date = datetime.now() | |
collection = db["gamelogs"] | |
max_date = current_date - timedelta(days=1) | |
min_date = current_date - timedelta(days=365) | |
team_names = collection.distinct("teamname") | |
player_names = collection.distinct("playername") | |
return team_names, player_names, min_date, max_date | |
db = init_conn() | |
team_names, player_names, min_date, max_date = init_data() | |
display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}', 'Over %': '{:.2%}', 'Under %': '{:.2%}'} | |
leagues = ['AL', 'CBLOL', 'GLL', 'HM', 'LCK', 'LCS', 'LEC', 'LFL', 'LLA', 'LPL', 'LPLOL', 'LVP SL', 'MSI', 'PCS', 'PGN', 'PRM', 'TCL', 'VCS', 'LTAN', 'LTAS', | |
'LLA', 'LPL', 'LPLOL', 'LVP SL', 'MSI', 'PCS', 'PGN', 'PRM', 'TCL', 'VCS', 'LTAN', 'LTAS'] | |
# Create sidebar container for options | |
with st.sidebar: | |
st.header("Team Analysis Options") | |
# Date filtering options | |
st.subheader("Date Range") | |
date_filter = st.radio( | |
"Select Date Range", | |
["Last Year", "Custom Range"] | |
) | |
if date_filter == "Last Year": | |
end_date = max_date | |
start_date = (end_date - timedelta(days=365)) | |
else: | |
col1, col2 = st.columns(2) | |
with col1: | |
start_date = st.date_input( | |
"Start Date", | |
value=max_date.date() - timedelta(days=30), | |
min_value=min_date.date(), | |
max_value=max_date.date() | |
) | |
with col2: | |
end_date = st.date_input( | |
"End Date", | |
value=max_date.date(), | |
min_value=min_date.date(), | |
max_value=max_date.date() | |
) | |
# Date filtering options | |
st.subheader("Data Type") | |
data_type = st.radio( | |
"Select Data Type", | |
["Team", "Player"] | |
) | |
col1, col2 = st.columns(2) | |
with col1: | |
if data_type == "Player": | |
selected_players = st.multiselect( | |
"Select Players", | |
options=player_names | |
) | |
else: | |
selected_team = st.selectbox( | |
"Select Team", | |
options=team_names, | |
index=team_names.index("T1") if "T1" in team_names else 0 | |
) | |
with col2: | |
selected_opponent = st.selectbox( | |
"Select Opponent", | |
options=team_names, | |
index=team_names.index("T1") if "T1" in team_names else 0 | |
) | |
st.subheader("Prediction Settings") | |
num_games = st.selectbox( | |
"How many games to simulate?", | |
options=["1", "2", "3", "4", "5"], | |
index=0 | |
) | |
# Convert BO format to number of games | |
game_count = int(num_games[0]) | |
# Create lists to store settings for each game | |
win_loss_settings = [] | |
game_settings_list = [] | |
kill_predictions = [] | |
death_predictions = [] | |
# Create a tab for each game | |
game_tabs = st.tabs([f"Game {i+1}" for i in range(game_count)]) | |
for game_num, game_tab in enumerate(game_tabs, 1): | |
with game_tab: | |
win_loss_settings.append(st.selectbox( | |
f"Game {game_num} Win/Loss", | |
options=["Win", "Loss"], | |
index=0, | |
key=f"win_loss_{game_num}" | |
)) | |
game_setting = st.selectbox( | |
f"Game {game_num} Prediction Type", | |
options=["Average", "Predict"], | |
index=0, | |
key=f"game_settings_{game_num}" | |
) | |
if game_setting == "Average": | |
kill_predictions.append(0) | |
death_predictions.append(0) | |
else: | |
col1, col2 = st.columns(2) | |
with col1: | |
kill_predictions.append(st.number_input( | |
f"Game {game_num} Predicted Team Kills", | |
min_value=1, | |
max_value=100, | |
value=20, | |
key=f"kills_{game_num}" | |
)) | |
with col2: | |
death_predictions.append(st.number_input( | |
f"Game {game_num} Predicted Team Deaths", | |
min_value=1, | |
max_value=100, | |
value=5, | |
key=f"deaths_{game_num}" | |
)) | |
def simulate_stats(row, num_sims=1000): | |
"""Simulate stats using normal distribution""" | |
# Using coefficient of variation of 0.3 to generate reasonable standard deviations | |
cv = 0.3 | |
percentiles = [10, 25, 50, 75, 90] | |
results = {} | |
for stat in ['Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']: | |
mean = row[stat] | |
std = mean * cv # Using coefficient of variation to determine std | |
sims = stats.norm.rvs(loc=mean, scale=std, size=num_sims) | |
# Ensure no negative values | |
sims = np.maximum(sims, 0) | |
results[stat] = np.percentile(sims, percentiles) | |
return pd.Series(results) | |
def init_team_data(game_count, team, opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date): | |
game_count = game_count | |
overall_team_data = pd.DataFrame(columns = ['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']) | |
# Convert date objects to datetime strings in the correct format | |
start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S") | |
end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S") | |
collection = db["gamelogs"] | |
cursor = collection.find({"teamname": team, "date": {"$gte": start_datetime, "$lte": end_datetime}}) | |
raw_display = pd.DataFrame(list(cursor)) | |
cursor = collection.find({"date": {"$gte": start_datetime, "$lte": end_datetime}}) | |
raw_opponent = pd.DataFrame(list(cursor)) | |
tables_to_loop = [raw_display, raw_opponent] | |
for loop in range(len(tables_to_loop)): | |
tables = tables_to_loop[loop] | |
calc_columns = ['kills', 'deaths', 'assists', 'total_cs'] | |
league_pos_win_stats = {} | |
league_pos_loss_stats = {} | |
Opponent_pos_win_allowed_stats = {} | |
Opponent_pos_loss_allowed_stats = {} | |
playername_win_stats = {} | |
playername_loss_stats = {} | |
teamname_win_stats = {} | |
teamname_loss_stats = {} | |
if loop == 0: | |
for stats in calc_columns: | |
playername_win_stats[stats] = tables[tables['result'] == 1].groupby(['playername'])[stats].mean().to_dict() | |
playername_loss_stats[stats] = tables[tables['result'] == 0].groupby(['playername'])[stats].mean().to_dict() | |
teamname_win_stats[stats] = tables[(tables['result'] == 1) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict() | |
teamname_loss_stats[stats] = tables[(tables['result'] == 0) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict() | |
for stat in calc_columns: | |
column_name = f'playername_avg_{stat}_win' | |
tables[column_name] = tables.apply( | |
lambda row: playername_win_stats[stat].get(row['playername'], 0), | |
axis=1 | |
) | |
column_name = f'playername_avg_{stat}_loss' | |
tables[column_name] = tables.apply( | |
lambda row: playername_loss_stats[stat].get(row['playername'], 0), | |
axis=1 | |
) | |
column_name = f'teamname_avg_{stat}_win' | |
tables[column_name] = tables.apply( | |
lambda row: teamname_win_stats[stat].get(row['teamname'], 0), | |
axis=1 | |
) | |
column_name = f'teamname_avg_{stat}_loss' | |
tables[column_name] = tables.apply( | |
lambda row: teamname_loss_stats[stat].get(row['teamname'], 0), | |
axis=1 | |
) | |
tables['playername_avg_kill_share_win'] = tables['playername_avg_kills_win'] / tables['teamname_avg_kills_win'] | |
tables['playername_avg_death_share_win'] = tables['playername_avg_deaths_win'] / tables['teamname_avg_deaths_win'] | |
tables['playername_avg_assist_share_win'] = tables['playername_avg_assists_win'] / tables['teamname_avg_kills_win'] | |
tables['playername_avg_cs_share_win'] = tables['playername_avg_total_cs_win'] / tables['teamname_avg_total_cs_win'] | |
tables['playername_avg_kill_share_loss'] = tables['playername_avg_kills_loss'] / tables['teamname_avg_kills_loss'] | |
tables['playername_avg_death_share_loss'] = tables['playername_avg_deaths_loss'] / tables['teamname_avg_deaths_loss'] | |
tables['playername_avg_assist_share_loss'] = tables['playername_avg_assists_loss'] / tables['teamname_avg_kills_loss'] | |
tables['playername_avg_cs_share_loss'] = tables['playername_avg_total_cs_loss'] / tables['teamname_avg_total_cs_loss'] | |
player_tables = tables | |
else: | |
for stats in calc_columns: | |
league_pos_win_stats[stats] = { | |
league: group.groupby('position')[stats].mean().to_dict() | |
for league, group in tables[tables['result'] == 1].groupby('league') | |
} | |
league_pos_loss_stats[stats] = { | |
league: group.groupby('position')[stats].mean().to_dict() | |
for league, group in tables[tables['result'] == 0].groupby('league') | |
} | |
Opponent_pos_win_allowed_stats[stats] = { | |
opponent: group.groupby('position')[stats].mean().to_dict() | |
for opponent, group in tables[tables['result'] == 1].groupby('Opponent') | |
} | |
Opponent_pos_loss_allowed_stats[stats] = { | |
opponent: group.groupby('position')[stats].mean().to_dict() | |
for opponent, group in tables[tables['result'] == 0].groupby('Opponent') | |
} | |
for stat in calc_columns: | |
column_name = f'league_pos_avg_{stat}_win' | |
tables[column_name] = tables.apply( | |
lambda row: league_pos_win_stats[stat].get(row['league'], {}).get(row['position'], 0), | |
axis=1 | |
) | |
column_name = f'league_pos_avg_{stat}_loss' | |
tables[column_name] = tables.apply( | |
lambda row: league_pos_loss_stats[stat].get(row['league'], {}).get(row['position'], 0), | |
axis=1 | |
) | |
column_name = f'Opponent_pos_avg_{stat}_allowed_win' | |
tables[column_name] = tables.apply( | |
lambda row: Opponent_pos_win_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0), | |
axis=1 | |
) | |
column_name = f'Opponent_pos_avg_{stat}_allowed_loss' | |
tables[column_name] = tables.apply( | |
lambda row: Opponent_pos_loss_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0), | |
axis=1 | |
) | |
tables = tables[tables['Opponent'] == opponent] | |
tables['overall_win_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_win'] / tables['league_pos_avg_kills_win'] | |
tables['overall_win_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_win'] / tables['league_pos_avg_deaths_win'] | |
tables['overall_win_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_win'] / tables['league_pos_avg_assists_win'] | |
tables['overall_win_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_win'] / tables['league_pos_avg_total_cs_win'] | |
tables['overall_loss_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_loss'] / tables['league_pos_avg_kills_loss'] | |
tables['overall_loss_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_loss'] / tables['league_pos_avg_deaths_loss'] | |
tables['overall_loss_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_loss'] / tables['league_pos_avg_assists_loss'] | |
tables['overall_loss_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_loss'] / tables['league_pos_avg_total_cs_loss'] | |
opp_tables = tables | |
opp_pos_kills_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_kills_boost_pos'])) | |
opp_pos_deaths_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_deaths_boost_pos'])) | |
opp_pos_assists_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_assists_boost_pos'])) | |
opp_pos_cs_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_total_cs_boost_pos'])) | |
opp_pos_kills_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_kills_boost_pos'])) | |
opp_pos_deaths_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_deaths_boost_pos'])) | |
opp_pos_assists_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_assists_boost_pos'])) | |
opp_pos_cs_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_total_cs_boost_pos'])) | |
opp_boosts = pd.DataFrame({ | |
'opp_pos_kills_boost_win': opp_pos_kills_boost_win, | |
'opp_pos_deaths_boost_win': opp_pos_deaths_boost_win, | |
'opp_pos_assists_boost_win': opp_pos_assists_boost_win, | |
'opp_pos_cs_boost_win': opp_pos_cs_boost_win, | |
'opp_pos_kills_boost_loss': opp_pos_kills_boost_loss, | |
'opp_pos_deaths_boost_loss': opp_pos_deaths_boost_loss, | |
'opp_pos_assists_boost_loss': opp_pos_assists_boost_loss, | |
'opp_pos_cs_boost_loss': opp_pos_cs_boost_loss | |
}).set_index(pd.Index(list(opp_pos_kills_boost_win.keys()), name='position')) | |
results_dict = {} | |
for game in range(game_count): | |
if kill_predictions[game] > 0: | |
working_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kills_win', 'playername_avg_deaths_win', 'playername_avg_assists_win', 'playername_avg_total_cs_win', | |
'playername_avg_kills_loss', 'playername_avg_deaths_loss', 'playername_avg_assists_loss', 'playername_avg_total_cs_loss']] | |
working_tables = working_tables.rename(columns = {'playername_avg_kills_win': 'wKill%', 'playername_avg_deaths_win': 'wDeath%', 'playername_avg_assists_win': 'wAssist%', | |
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kills_loss': 'lKill%', 'playername_avg_deaths_loss': 'lDeath%', | |
'playername_avg_assists_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'}) | |
team_data = working_tables.drop_duplicates(subset = ['playername']) | |
team_data = working_tables.drop_duplicates(subset = ['position']) | |
if win_loss_settings[game] == "Win": | |
raw_kills = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1) | |
raw_deaths = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1) | |
raw_assists = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1) | |
kill_scale = kill_predictions[game] / raw_kills.sum() | |
death_scale = death_predictions[game] / raw_deaths.sum() | |
team_data['Kill_Proj'] = raw_kills * kill_scale | |
team_data['Death_Proj'] = raw_deaths * death_scale | |
team_data['Assist_Proj'] = raw_assists * kill_scale | |
team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1) | |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']] | |
else: | |
raw_kills = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1) | |
raw_deaths = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1) | |
raw_assists = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1) | |
kill_scale = kill_predictions[game] / raw_kills.sum() | |
death_scale = death_predictions[game] / raw_deaths.sum() | |
team_data['Kill_Proj'] = raw_kills * kill_scale | |
team_data['Death_Proj'] = raw_deaths * death_scale | |
team_data['Assist_Proj'] = raw_assists * kill_scale | |
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1) | |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']] | |
else: | |
working_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kills_win', 'playername_avg_deaths_win', 'playername_avg_assists_win', 'playername_avg_total_cs_win', | |
'playername_avg_kills_loss', 'playername_avg_deaths_loss', 'playername_avg_assists_loss', 'playername_avg_total_cs_loss']] | |
working_tables = working_tables.rename(columns = {'playername_avg_kills_win': 'wKill%', 'playername_avg_deaths_win': 'wDeath%', 'playername_avg_assists_win': 'wAssist%', | |
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kills_loss': 'lKill%', 'playername_avg_deaths_loss': 'lDeath%', | |
'playername_avg_assists_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'}) | |
team_data = working_tables.drop_duplicates(subset = ['playername']) | |
team_data = working_tables.drop_duplicates(subset = ['position']) | |
if win_loss_settings[game] == "Win": | |
team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1) | |
team_data['Death_Proj'] = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1) | |
team_data['Assist_Base'] = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1) | |
team_data['Assist_Proj'] = team_data['Assist_Base'] | |
team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1) | |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']] | |
else: | |
team_data['Kill_Proj'] = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1) | |
team_data['Death_Proj'] = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1) | |
team_data['Assist_Base'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1) | |
team_data['Assist_Proj'] = team_data['Assist_Base'] | |
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1) | |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']] | |
results_dict[f'game {game + 1}'] = team_data.dropna() | |
team_data['playername'] = team_data['playername'] + f' game {game + 1}' | |
overall_team_data = pd.concat([overall_team_data, team_data]) | |
return overall_team_data.dropna().set_index('playername'), opp_boosts, results_dict, player_tables | |
def init_player_data(game_count, players, opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date): | |
game_count = game_count | |
overall_team_data = pd.DataFrame(columns = ['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']) | |
# Convert date objects to datetime strings in the correct format | |
start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S") | |
end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S") | |
collection = db["gamelogs"] | |
cursor = collection.find({"playername": {"$in": players}, "date": {"$gte": start_datetime, "$lte": end_datetime}}) | |
raw_display = pd.DataFrame(list(cursor)) | |
teams = raw_display['teamname'].unique().tolist() | |
cursor = collection.find({"teamname": {"$in": teams}, "date": {"$gte": start_datetime, "$lte": end_datetime}}) | |
raw_team = pd.DataFrame(list(cursor)) | |
cursor = collection.find({"date": {"$gte": start_datetime, "$lte": end_datetime}}) | |
raw_opponent = pd.DataFrame(list(cursor)) | |
tables_to_loop = [raw_display, raw_opponent, raw_team] | |
for loop in range(len(tables_to_loop)): | |
tables = tables_to_loop[loop] | |
calc_columns = ['kills', 'deaths', 'assists', 'total_cs'] | |
league_pos_win_stats = {} | |
league_pos_loss_stats = {} | |
Opponent_pos_win_allowed_stats = {} | |
Opponent_pos_loss_allowed_stats = {} | |
playername_win_stats = {} | |
playername_loss_stats = {} | |
teamname_win_stats = {} | |
teamname_loss_stats = {} | |
if loop == 0: | |
for stats in calc_columns: | |
playername_win_stats[stats] = tables[tables['result'] == 1].groupby(['playername'])[stats].mean().to_dict() | |
playername_loss_stats[stats] = tables[tables['result'] == 0].groupby(['playername'])[stats].mean().to_dict() | |
teamname_win_stats[stats] = tables[(tables['result'] == 1) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict() | |
teamname_loss_stats[stats] = tables[(tables['result'] == 0) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict() | |
for stat in calc_columns: | |
column_name = f'playername_avg_{stat}_win' | |
tables[column_name] = tables.apply( | |
lambda row: playername_win_stats[stat].get(row['playername'], 0), | |
axis=1 | |
) | |
column_name = f'playername_avg_{stat}_loss' | |
tables[column_name] = tables.apply( | |
lambda row: playername_loss_stats[stat].get(row['playername'], 0), | |
axis=1 | |
) | |
if loop == 2: | |
column_name = f'teamname_avg_{stat}_win' | |
tables[column_name] = tables.apply( | |
lambda row: teamname_win_stats[stat].get(row['teamname'], 0), | |
axis=1 | |
) | |
column_name = f'teamname_avg_{stat}_loss' | |
tables[column_name] = tables.apply( | |
lambda row: teamname_loss_stats[stat].get(row['teamname'], 0), | |
axis=1 | |
) | |
tables['playername_avg_kill_share_win'] = tables['playername_avg_kills_win'] / tables['teamname_avg_kills_win'] | |
tables['playername_avg_death_share_win'] = tables['playername_avg_deaths_win'] / tables['teamname_avg_deaths_win'] | |
tables['playername_avg_assist_share_win'] = tables['playername_avg_assists_win'] / tables['teamname_avg_kills_win'] | |
tables['playername_avg_cs_share_win'] = tables['playername_avg_total_cs_win'] / tables['teamname_avg_total_cs_win'] | |
tables['playername_avg_kill_share_loss'] = tables['playername_avg_kills_loss'] / tables['teamname_avg_kills_loss'] | |
tables['playername_avg_death_share_loss'] = tables['playername_avg_deaths_loss'] / tables['teamname_avg_deaths_loss'] | |
tables['playername_avg_assist_share_loss'] = tables['playername_avg_assists_loss'] / tables['teamname_avg_kills_loss'] | |
tables['playername_avg_cs_share_loss'] = tables['playername_avg_total_cs_loss'] / tables['teamname_avg_total_cs_loss'] | |
player_tables = tables | |
else: | |
for stats in calc_columns: | |
league_pos_win_stats[stats] = { | |
league: group.groupby('position')[stats].mean().to_dict() | |
for league, group in tables[tables['result'] == 1].groupby('league') | |
} | |
league_pos_loss_stats[stats] = { | |
league: group.groupby('position')[stats].mean().to_dict() | |
for league, group in tables[tables['result'] == 0].groupby('league') | |
} | |
Opponent_pos_win_allowed_stats[stats] = { | |
opponent: group.groupby('position')[stats].mean().to_dict() | |
for opponent, group in tables[tables['result'] == 1].groupby('Opponent') | |
} | |
Opponent_pos_loss_allowed_stats[stats] = { | |
opponent: group.groupby('position')[stats].mean().to_dict() | |
for opponent, group in tables[tables['result'] == 0].groupby('Opponent') | |
} | |
for stat in calc_columns: | |
column_name = f'league_pos_avg_{stat}_win' | |
tables[column_name] = tables.apply( | |
lambda row: league_pos_win_stats[stat].get(row['league'], {}).get(row['position'], 0), | |
axis=1 | |
) | |
column_name = f'league_pos_avg_{stat}_loss' | |
tables[column_name] = tables.apply( | |
lambda row: league_pos_loss_stats[stat].get(row['league'], {}).get(row['position'], 0), | |
axis=1 | |
) | |
column_name = f'Opponent_pos_avg_{stat}_allowed_win' | |
tables[column_name] = tables.apply( | |
lambda row: Opponent_pos_win_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0), | |
axis=1 | |
) | |
column_name = f'Opponent_pos_avg_{stat}_allowed_loss' | |
tables[column_name] = tables.apply( | |
lambda row: Opponent_pos_loss_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0), | |
axis=1 | |
) | |
tables = tables[tables['Opponent'] == opponent] | |
tables['overall_win_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_win'] / tables['league_pos_avg_kills_win'] | |
tables['overall_win_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_win'] / tables['league_pos_avg_deaths_win'] | |
tables['overall_win_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_win'] / tables['league_pos_avg_assists_win'] | |
tables['overall_win_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_win'] / tables['league_pos_avg_total_cs_win'] | |
tables['overall_loss_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_loss'] / tables['league_pos_avg_kills_loss'] | |
tables['overall_loss_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_loss'] / tables['league_pos_avg_deaths_loss'] | |
tables['overall_loss_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_loss'] / tables['league_pos_avg_assists_loss'] | |
tables['overall_loss_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_loss'] / tables['league_pos_avg_total_cs_loss'] | |
opp_tables = tables | |
opp_pos_kills_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_kills_boost_pos'])) | |
opp_pos_deaths_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_deaths_boost_pos'])) | |
opp_pos_assists_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_assists_boost_pos'])) | |
opp_pos_cs_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_total_cs_boost_pos'])) | |
opp_pos_kills_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_kills_boost_pos'])) | |
opp_pos_deaths_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_deaths_boost_pos'])) | |
opp_pos_assists_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_assists_boost_pos'])) | |
opp_pos_cs_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_total_cs_boost_pos'])) | |
opp_boosts = pd.DataFrame({ | |
'opp_pos_kills_boost_win': opp_pos_kills_boost_win, | |
'opp_pos_deaths_boost_win': opp_pos_deaths_boost_win, | |
'opp_pos_assists_boost_win': opp_pos_assists_boost_win, | |
'opp_pos_cs_boost_win': opp_pos_cs_boost_win, | |
'opp_pos_kills_boost_loss': opp_pos_kills_boost_loss, | |
'opp_pos_deaths_boost_loss': opp_pos_deaths_boost_loss, | |
'opp_pos_assists_boost_loss': opp_pos_assists_boost_loss, | |
'opp_pos_cs_boost_loss': opp_pos_cs_boost_loss | |
}).set_index(pd.Index(list(opp_pos_kills_boost_win.keys()), name='position')) | |
results_dict = {} | |
for game in range(game_count): | |
if kill_predictions[game] > 0: | |
working_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kills_win', 'playername_avg_deaths_win', 'playername_avg_assists_win', 'playername_avg_total_cs_win', | |
'playername_avg_kills_loss', 'playername_avg_deaths_loss', 'playername_avg_assists_loss', 'playername_avg_total_cs_loss']] | |
working_tables = working_tables.rename(columns = {'playername_avg_kills_win': 'wKill%', 'playername_avg_deaths_win': 'wDeath%', 'playername_avg_assists_win': 'wAssist%', | |
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kills_loss': 'lKill%', 'playername_avg_deaths_loss': 'lDeath%', | |
'playername_avg_assists_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'}) | |
team_data = working_tables.drop_duplicates(subset = ['playername']) | |
team_data = working_tables.drop_duplicates(subset = ['position']) | |
if win_loss_settings[game] == "Win": | |
raw_kills = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1) | |
raw_deaths = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1) | |
raw_assists = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1) | |
kill_scale = kill_predictions[game] / raw_kills.sum() | |
death_scale = death_predictions[game] / raw_deaths.sum() | |
team_data['Kill_Proj'] = raw_kills * kill_scale | |
team_data['Death_Proj'] = raw_deaths * death_scale | |
team_data['Assist_Proj'] = raw_assists * kill_scale | |
team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1) | |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']] | |
else: | |
raw_kills = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1) | |
raw_deaths = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1) | |
raw_assists = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1) | |
kill_scale = kill_predictions[game] / raw_kills.sum() | |
death_scale = death_predictions[game] / raw_deaths.sum() | |
team_data['Kill_Proj'] = raw_kills * kill_scale | |
team_data['Death_Proj'] = raw_deaths * death_scale | |
team_data['Assist_Proj'] = raw_assists * kill_scale | |
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1) | |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']] | |
else: | |
working_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kills_win', 'playername_avg_deaths_win', 'playername_avg_assists_win', 'playername_avg_total_cs_win', | |
'playername_avg_kills_loss', 'playername_avg_deaths_loss', 'playername_avg_assists_loss', 'playername_avg_total_cs_loss']] | |
working_tables = working_tables.rename(columns = {'playername_avg_kills_win': 'wKill%', 'playername_avg_deaths_win': 'wDeath%', 'playername_avg_assists_win': 'wAssist%', | |
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kills_loss': 'lKill%', 'playername_avg_deaths_loss': 'lDeath%', | |
'playername_avg_assists_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'}) | |
team_data = working_tables.drop_duplicates(subset = ['playername']) | |
if win_loss_settings[game] == "Win": | |
team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1) | |
team_data['Death_Proj'] = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1) | |
team_data['Assist_Base'] = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1) | |
team_data['Assist_Proj'] = team_data['Assist_Base'] | |
team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1) | |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']] | |
else: | |
team_data['Kill_Proj'] = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1) | |
team_data['Death_Proj'] = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1) | |
team_data['Assist_Base'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1) | |
team_data['Assist_Proj'] = team_data['Assist_Base'] | |
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1) | |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']] | |
results_dict[f'game {game + 1}'] = team_data.dropna() | |
team_data['playername'] = team_data['playername'] + f' game {game + 1}' | |
overall_team_data = pd.concat([overall_team_data, team_data]) | |
return overall_team_data.dropna().set_index('playername'), opp_boosts, results_dict, player_tables | |
if st.button("Load/Reset Data", key='reset1'): | |
st.cache_data.clear() | |
for key in st.session_state.keys(): | |
del st.session_state[key] | |
if st.button("Run"): | |
if data_type == "Team": | |
st.session_state.team_data, st.session_state.opp_boost, st.session_state.results_dict, st.session_state.gamelogs = init_team_data(game_count, selected_team, selected_opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date) | |
else: | |
st.session_state.team_data, st.session_state.opp_boost, st.session_state.results_dict, st.session_state.gamelogs = init_player_data(game_count, selected_players, selected_opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date) | |
st.session_state.gamelogs_display = st.session_state.gamelogs[['date', 'teamname', 'Opponent', 'playername', 'position', 'result', 'kills', 'playername_avg_kills_win', 'playername_avg_kills_loss', 'deaths', 'playername_avg_deaths_win', 'playername_avg_deaths_loss', 'assists', 'playername_avg_assists_win', 'playername_avg_assists_loss', 'total_cs', 'playername_avg_total_cs_win', 'playername_avg_total_cs_loss', 'fantasy']] | |
st.session_state.gamelogs_display = st.session_state.gamelogs_display.rename(columns = {'teamname': 'Team', 'Opponent': 'Opp', 'playername': 'Player', | |
'position': 'Pos', 'result': 'W/L', 'playername_avg_kills_win': 'Avg_Kill_Win', | |
'playername_avg_deaths_win': 'Avg_Death_Win', 'playername_avg_assists_win': 'Avg_Assist_Win', 'playername_avg_total_cs_win': 'Avg_CS_Win', | |
'playername_avg_kills_loss': 'Avg_Kill_Loss', 'playername_avg_deaths_loss': 'Avg_Death_Loss', 'playername_avg_assists_loss': 'Avg_Assist_Loss', 'playername_avg_total_cs_loss': 'Avg_CS_Loss', | |
'kills': 'Kill', 'deaths': 'Death', 'assists': 'Assist', 'total_cs': 'CS', 'fantasy': 'Fantasy'}) | |
st.session_state.gamelogs_display = st.session_state.gamelogs_display[st.session_state.gamelogs_display['Pos'] != 'team'] | |
st.session_state.gamelogs_display = st.session_state.gamelogs_display.sort_values(by = ['date'], ascending = False) | |
st.session_state.gamelogs_display = st.session_state.gamelogs_display.reset_index(drop = True) | |
st.session_state.gamelogs_display['Fantasy'] = st.session_state.gamelogs_display['Fantasy'].astype(float).round(2) | |
st.session_state.player_summary = pd.DataFrame() | |
for game_num in range(game_count): | |
st.session_state.game_df = st.session_state.results_dict[f'game {game_num + 1}'] # Use correct dictionary key format | |
# Remove 'game X' from playernames if present | |
st.session_state.clean_df = st.session_state.game_df.copy() | |
st.session_state.clean_df['playername'] = st.session_state.clean_df['playername'].str.split(' game ').str[0] | |
if st.session_state.player_summary.empty: | |
st.session_state.player_summary = st.session_state.clean_df | |
else: | |
# Add the stats to existing players | |
for col in ['Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']: | |
st.session_state.player_summary[col] += st.session_state.clean_df[col] | |
# Update teamname and position if needed | |
st.session_state.player_summary['teamname'].update(st.session_state.clean_df['teamname']) | |
st.session_state.player_summary['position'].update(st.session_state.clean_df['position']) | |
st.session_state.player_summary = st.session_state.player_summary.set_index('playername') | |
# Create simulated percentiles | |
individual_sim_results = [] | |
for idx, row in st.session_state.team_data.iterrows(): | |
percentiles = simulate_stats(row) | |
individual_sim_results.append({ | |
'Player': idx, | |
'Position': row['position'], | |
'Stat': 'Kills', | |
'10%': percentiles['Kill_Proj'][0], | |
'25%': percentiles['Kill_Proj'][1], | |
'50%': percentiles['Kill_Proj'][2], | |
'75%': percentiles['Kill_Proj'][3], | |
'90%': percentiles['Kill_Proj'][4] | |
}) | |
# Repeat for other stats | |
for stat, name in [('Death_Proj', 'Deaths'), ('Assist_Proj', 'Assists'), ('CS_Proj', 'CS')]: | |
individual_sim_results.append({ | |
'Player': idx, | |
'Position': row['position'], | |
'Stat': name, | |
'10%': percentiles[stat][0], | |
'25%': percentiles[stat][1], | |
'50%': percentiles[stat][2], | |
'75%': percentiles[stat][3], | |
'90%': percentiles[stat][4] | |
}) | |
st.session_state.sim_df = pd.DataFrame(individual_sim_results) | |
# Create simulated percentiles | |
overall_sim_results = [] | |
for idx, row in st.session_state.player_summary.iterrows(): | |
percentiles = simulate_stats(row) | |
overall_sim_results.append({ | |
'Player': idx, | |
'Position': row['position'], | |
'Stat': 'Kills', | |
'10%': percentiles['Kill_Proj'][0], | |
'25%': percentiles['Kill_Proj'][1], | |
'50%': percentiles['Kill_Proj'][2], | |
'75%': percentiles['Kill_Proj'][3], | |
'90%': percentiles['Kill_Proj'][4] | |
}) | |
# Repeat for other stats | |
for stat, name in [('Death_Proj', 'Deaths'), ('Assist_Proj', 'Assists'), ('CS_Proj', 'CS')]: | |
overall_sim_results.append({ | |
'Player': idx, | |
'Position': row['position'], | |
'Stat': name, | |
'10%': percentiles[stat][0], | |
'25%': percentiles[stat][1], | |
'50%': percentiles[stat][2], | |
'75%': percentiles[stat][3], | |
'90%': percentiles[stat][4] | |
}) | |
st.session_state.overall_sim_df = pd.DataFrame(overall_sim_results) | |
st.session_state.overall_sim_df = st.session_state.overall_sim_df.drop_duplicates(subset = ['Player', 'Stat']) | |
tab1, tab2, tab3, tab4 = st.tabs(["Gamelogs", "Individual Game Data", "Opponent Boosts", "Full Match Data"]) | |
with tab4: | |
if 'player_summary' in st.session_state: | |
st.subheader("Full Match Data") | |
st.dataframe(st.session_state.player_summary.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True) | |
if 'overall_sim_df' in st.session_state: | |
st.subheader("Overall Simulations") | |
stat_tabs = st.tabs(["Kills", "Deaths", "Assists", "CS"]) | |
for stat, tab in zip(["Kills", "Deaths", "Assists", "CS"], stat_tabs): | |
with tab: | |
st.session_state.stat_data = st.session_state.overall_sim_df[st.session_state.overall_sim_df['Stat'] == stat].copy() | |
st.session_state.stat_data = st.session_state.stat_data.set_index('Player')[['Position', '10%', '25%', '50%', '75%', '90%']] | |
st.dataframe( | |
st.session_state.stat_data.style.format(precision=2).background_gradient(axis=0).background_gradient(cmap='RdYlGn'), | |
use_container_width=True | |
) | |
st.subheader("Prop Check") | |
col1, col2 = st.columns([2, 8]) | |
with col1: | |
prop_var = st.number_input("Enter Prop Value", min_value=0.0, max_value=100.0, value=4.5, step=0.5) | |
stat_choice = st.selectbox("Select Stat", ["Kills", "Deaths", "Assists", "CS"]) | |
with col2: | |
# Filter data for selected stat | |
st.session_state.stat_data = st.session_state.overall_sim_df[st.session_state.overall_sim_df['Stat'] == stat_choice].copy() | |
# Calculate mean and standard deviation using percentiles | |
# Using the fact that in a normal distribution: | |
# 10th percentile is -1.28 SD from mean | |
# 90th percentile is 1.28 SD from mean | |
st.session_state.stat_data['mean'] = (st.session_state.stat_data['90%'] + st.session_state.stat_data['10%']) / 2 | |
st.session_state.stat_data['std'] = (st.session_state.stat_data['90%'] - st.session_state.stat_data['10%']) / (2 * 1.28) | |
# Calculate probabilities | |
st.session_state.stat_data['over_prob'] = st.session_state.stat_data.apply( | |
lambda x: 1 - stats.norm.cdf(prop_var, x['mean'], x['std']), axis=1 | |
) | |
st.session_state.stat_data['under_prob'] = st.session_state.stat_data.apply( | |
lambda x: stats.norm.cdf(prop_var, x['mean'], x['std']), axis=1 | |
) | |
# Prepare display dataframe | |
st.session_state.display_df = st.session_state.stat_data[['Player', 'Position', 'over_prob', 'under_prob']].copy() | |
st.session_state.display_df['Over %'] = (st.session_state.display_df['over_prob']).round(2) | |
st.session_state.display_df['Under %'] = (st.session_state.display_df['under_prob']).round(2) | |
# Display results | |
st.dataframe( | |
st.session_state.display_df[['Player', 'Position', 'Over %', 'Under %']] | |
.set_index('Player') | |
.style.background_gradient(subset=['Over %', 'Under %'], cmap='RdYlGn').format(display_formats, precision=2), | |
use_container_width=True | |
) | |
with tab2: | |
if 'team_data' in st.session_state: | |
st.subheader("Individual Game Data") | |
st.dataframe(st.session_state.team_data.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True) | |
if 'sim_df' in st.session_state: | |
st.subheader("Individual Game Simulations") | |
unique_players = st.session_state.sim_df['Player'].unique().tolist() | |
player_tabs = st.tabs(unique_players) | |
for player, tab in zip(unique_players, player_tabs): | |
with tab: | |
player_data = st.session_state.sim_df[st.session_state.sim_df['Player'] == player] | |
player_data = player_data.set_index('Stat') | |
st.dataframe( | |
player_data[['10%', '25%', '50%', '75%', '90%']] | |
.style.format(precision=2), | |
use_container_width=True | |
) | |
with tab3: | |
if 'opp_boost' in st.session_state: | |
st.subheader("Opponent Boosts") | |
st.dataframe(st.session_state.opp_boost.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) | |
with tab1: | |
if 'gamelogs_display' in st.session_state: | |
st.subheader("Gamelogs") | |
with st.container(): | |
col1, col2, col3 = st.columns([4, 4, 4]) | |
with col1: | |
player_toggle = st.selectbox("Do you want to view all players or just one?", ['All', 'One']) | |
with col2: | |
if player_toggle == 'One': | |
player_search = st.selectbox("Search for a player", st.session_state.gamelogs_display['Player'].unique().tolist()) | |
else: | |
player_search = 'All' | |
with col3: | |
scenario_search = st.selectbox("Wins, Losses, or All games?", ['All', 'Wins', 'Losses']) | |
if player_toggle == 'One': | |
st.session_state.gamelogs_final = st.session_state.gamelogs_display[st.session_state.gamelogs_display['Player'] == player_search] | |
else: | |
st.session_state.gamelogs_final = st.session_state.gamelogs_display | |
if scenario_search == 'Wins': | |
st.session_state.gamelogs_final = st.session_state.gamelogs_final[st.session_state.gamelogs_final['W/L'] == 1] | |
elif scenario_search == 'Losses': | |
st.session_state.gamelogs_final = st.session_state.gamelogs_final[st.session_state.gamelogs_final['W/L'] == 0] | |
else: | |
st.session_state.gamelogs_final = st.session_state.gamelogs_final | |
st.dataframe(st.session_state.gamelogs_final.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) |