File size: 50,336 Bytes
7545b49
 
 
 
 
 
fac7ac1
6244ceb
7545b49
 
 
 
 
 
 
 
60577ca
24a1053
60577ca
 
 
7545b49
60577ca
 
 
 
 
 
 
7545b49
60577ca
 
7545b49
39eff33
896d108
 
2536839
a655909
 
 
fac7ac1
 
 
 
 
 
 
 
 
b9e7e41
 
fac7ac1
 
 
 
 
a88c238
 
 
fac7ac1
 
 
 
a88c238
 
 
fac7ac1
 
896d108
 
 
 
 
 
 
94f8ddd
 
896d108
 
 
 
 
 
 
 
 
 
 
94f8ddd
 
 
 
 
 
f0e935b
 
 
5b0cc81
 
f0e935b
 
4b70cc2
e568f6d
5b0cc81
e568f6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f8ddd
cb5655c
e568f6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06ca2c8
6244ceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53059ec
34b8899
 
f35299f
0f5bf62
 
 
 
7545b49
0f5bf62
7545b49
a769f8a
30408c9
4b70cc2
 
46a3d32
 
 
 
4b70cc2
 
 
 
 
 
 
 
 
 
46a3d32
45307d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b70cc2
45307d2
4b70cc2
45307d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b70cc2
45307d2
 
 
 
 
 
 
 
46e893a
 
 
 
 
 
 
 
 
 
a769f8a
7e17f0f
 
e568f6d
 
a5d3bed
 
 
 
 
9e23c76
ceb105f
e568f6d
 
96d48dc
 
 
d107b59
dd13903
1e0aade
 
2bd68c9
ceb105f
e568f6d
 
 
96d48dc
 
 
dd13903
 
1e0aade
 
2bd68c9
ceb105f
e568f6d
 
cb5655c
9e23c76
e568f6d
9e23c76
e568f6d
 
9e23c76
ceb105f
e568f6d
 
 
 
7fc9432
dd13903
e568f6d
 
 
 
 
7fc9432
dd13903
e568f6d
 
7e17f0f
026f31b
9e23c76
e568f6d
11e981b
e568f6d
4894b46
7545b49
896d108
34b8899
 
896d108
 
 
 
 
 
66deb94
896d108
 
b3a8168
d6b4eb2
 
 
 
896d108
 
 
d6b4eb2
896d108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2664c1
 
896d108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6b4eb2
 
 
 
 
 
 
 
 
 
 
 
896d108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb946c
dd13903
 
 
 
 
896d108
dd13903
896d108
 
dd13903
 
 
 
 
 
 
 
ceb105f
896d108
 
 
dd13903
 
 
 
 
 
 
 
ceb105f
896d108
 
 
 
 
 
 
 
 
 
 
 
 
268b562
dd13903
896d108
 
 
 
 
268b562
dd13903
896d108
 
 
 
 
 
 
 
4894b46
896d108
06ca2c8
 
 
 
 
a655909
896d108
4894b46
896d108
4894b46
f29027b
1549530
8900bd4
 
 
1549530
8900bd4
316143c
7c053d1
 
53b9faf
392cd38
 
e67403e
511fd8d
f29027b
511fd8d
 
f29027b
392cd38
511fd8d
f29027b
 
 
511fd8d
e67403e
511fd8d
 
e67403e
392cd38
6244ceb
 
11e981b
392cd38
6244ceb
11e981b
6244ceb
 
 
e3cbf81
 
 
 
 
6244ceb
 
 
11e981b
6244ceb
 
 
e3cbf81
 
 
 
 
6244ceb
 
392cd38
11e981b
 
 
392cd38
11e981b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
392cd38
 
6244ceb
268b562
656c08a
b65158e
11e981b
392cd38
dc7066d
b65158e
dc7066d
 
9caa087
dc7066d
 
392cd38
 
dc7066d
392cd38
dc7066d
 
9caa087
b9557f5
 
 
 
 
 
 
392cd38
b9557f5
 
 
 
 
392cd38
 
b9557f5
 
392cd38
b9557f5
 
392cd38
b9557f5
 
 
 
392cd38
39eff33
 
b9557f5
 
 
392cd38
b9557f5
39eff33
b9557f5
 
dc7066d
9caa087
b65158e
11e981b
392cd38
6244ceb
b65158e
dc7066d
392cd38
dc7066d
 
 
 
392cd38
dc7066d
 
 
 
 
 
14d978b
9caa087
b65158e
9caa087
392cd38
4894b46
656c08a
7c053d1
4894b46
1549530
2fef8c4
656c08a
2fef8c4
 
 
 
 
 
 
 
1549530
2fef8c4
 
 
 
1549530
2fef8c4
1549530
2fef8c4
1549530
2fef8c4
1549530
2fef8c4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import pymongo
import time
from datetime import datetime, timedelta
from scipy import stats

@st.cache_resource
def init_conn():
        
        uri = st.secrets['mongo_uri']
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client["League_of_Legends_Database"]

        return db

@st.cache_resource(ttl = 300)
def init_data():
    current_date = datetime.now()

    collection = db["gamelogs"] 
    max_date = current_date - timedelta(days=1)
    min_date = current_date - timedelta(days=365)
    team_names = collection.distinct("teamname")
    player_names = collection.distinct("playername")

    return team_names, player_names, min_date, max_date
    
db = init_conn()
team_names, player_names, min_date, max_date = init_data()

display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}', 'Over %': '{:.2%}', 'Under %': '{:.2%}'}
leagues = ['AL', 'CBLOL', 'GLL', 'HM', 'LCK', 'LCS', 'LEC', 'LFL', 'LLA', 'LPL', 'LPLOL', 'LVP SL', 'MSI', 'PCS', 'PGN', 'PRM', 'TCL', 'VCS', 'LTAN', 'LTAS',
        'LLA', 'LPL', 'LPLOL', 'LVP SL', 'MSI', 'PCS', 'PGN', 'PRM', 'TCL', 'VCS', 'LTAN', 'LTAS']

# Create sidebar container for options
with st.sidebar:
    st.header("Team Analysis Options")

    # Date filtering options
    st.subheader("Date Range")
    date_filter = st.radio(
        "Select Date Range",
        ["Last Year", "Custom Range"]
    )
    
    if date_filter == "Last Year":
        end_date = max_date
        start_date = (end_date - timedelta(days=365))
    else:
        col1, col2 = st.columns(2)
        with col1:
            start_date = st.date_input(
                "Start Date",
                value=max_date.date() - timedelta(days=30),
                min_value=min_date.date(),
                max_value=max_date.date()
            )
        with col2:
            end_date = st.date_input(
                "End Date",
                value=max_date.date(),
                min_value=min_date.date(),
                max_value=max_date.date()
            )

    # Date filtering options
    st.subheader("Data Type")
    data_type = st.radio(
        "Select Data Type",
        ["Team", "Player"]
    )

    col1, col2 = st.columns(2)
    with col1:
        if data_type == "Player":
            selected_players = st.multiselect(
                "Select Players",
                options=player_names
            )
        else:
            selected_team = st.selectbox(
                "Select Team",
                options=team_names,
                index=team_names.index("T1") if "T1" in team_names else 0
            )
    with col2:
        selected_opponent = st.selectbox(
            "Select Opponent",
            options=team_names,
            index=team_names.index("T1") if "T1" in team_names else 0
        )

    st.subheader("Prediction Settings")
    num_games = st.selectbox(
        "How many games to simulate?",
        options=["1", "2", "3", "4", "5"],
        index=0
    )
    
    # Convert BO format to number of games
    game_count = int(num_games[0])
    
    # Create lists to store settings for each game
    win_loss_settings = []
    game_settings_list = []
    kill_predictions = []
    death_predictions = []
    
    # Create a tab for each game
    game_tabs = st.tabs([f"Game {i+1}" for i in range(game_count)])
    
    for game_num, game_tab in enumerate(game_tabs, 1):
        with game_tab:

            win_loss_settings.append(st.selectbox(
                f"Game {game_num} Win/Loss",
                options=["Win", "Loss"],
                index=0,
                key=f"win_loss_{game_num}"
            ))
            game_setting = st.selectbox(
                f"Game {game_num} Prediction Type",
                options=["Average", "Predict"],
                index=0,
                key=f"game_settings_{game_num}"
            )

            if game_setting == "Average":
                kill_predictions.append(0)
                death_predictions.append(0)
            else:
                col1, col2 = st.columns(2)
                with col1:
                    kill_predictions.append(st.number_input(
                        f"Game {game_num} Predicted Team Kills",
                        min_value=1,
                        max_value=100,
                        value=20,
                        key=f"kills_{game_num}"
                    ))
                with col2:
                    death_predictions.append(st.number_input(
                        f"Game {game_num} Predicted Team Deaths",
                        min_value=1,
                        max_value=100,
                        value=5,
                        key=f"deaths_{game_num}"
                    ))

@st.cache_data(ttl = 60)
def simulate_stats(row, num_sims=1000):
    """Simulate stats using normal distribution"""
    # Using coefficient of variation of 0.3 to generate reasonable standard deviations
    cv = 0.3
    percentiles = [10, 25, 50, 75, 90]
    
    results = {}
    for stat in ['Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']:
        mean = row[stat]
        std = mean * cv  # Using coefficient of variation to determine std
        sims = stats.norm.rvs(loc=mean, scale=std, size=num_sims)
        # Ensure no negative values
        sims = np.maximum(sims, 0)
        results[stat] = np.percentile(sims, percentiles)
    
    return pd.Series(results)

@st.cache_data(ttl = 60)
def init_team_data(game_count, team, opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date):  
        game_count = game_count
        overall_team_data = pd.DataFrame(columns = ['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj'])
        # Convert date objects to datetime strings in the correct format
        start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
        end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S")

        collection = db["gamelogs"] 
        cursor = collection.find({"teamname": team, "date": {"$gte": start_datetime, "$lte": end_datetime}})
        raw_display = pd.DataFrame(list(cursor))

        cursor = collection.find({"date": {"$gte": start_datetime, "$lte": end_datetime}})
        raw_opponent = pd.DataFrame(list(cursor))

        tables_to_loop = [raw_display, raw_opponent]

        for loop in range(len(tables_to_loop)):
            tables = tables_to_loop[loop]
            calc_columns = ['kills', 'deaths', 'assists', 'total_cs']
            league_pos_win_stats = {}   
            league_pos_loss_stats = {}
            Opponent_pos_win_allowed_stats = {}
            Opponent_pos_loss_allowed_stats = {}
            playername_win_stats = {}
            playername_loss_stats = {}
            teamname_win_stats = {}
            teamname_loss_stats = {}

            if loop == 0:

                for stats in calc_columns:
                    playername_win_stats[stats] = tables[tables['result'] == 1].groupby(['playername'])[stats].mean().to_dict()
                    playername_loss_stats[stats] = tables[tables['result'] == 0].groupby(['playername'])[stats].mean().to_dict()
                    teamname_win_stats[stats] = tables[(tables['result'] == 1) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
                    teamname_loss_stats[stats] = tables[(tables['result'] == 0) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict() 

                for stat in calc_columns:

                    column_name = f'playername_avg_{stat}_win'
                    tables[column_name] = tables.apply(
                        lambda row: playername_win_stats[stat].get(row['playername'], 0), 
                        axis=1
                    )

                    column_name = f'playername_avg_{stat}_loss'
                    tables[column_name] = tables.apply(
                        lambda row: playername_loss_stats[stat].get(row['playername'], 0), 
                        axis=1
                    )

                    column_name = f'teamname_avg_{stat}_win'
                    tables[column_name] = tables.apply(
                        lambda row: teamname_win_stats[stat].get(row['teamname'], 0), 
                        axis=1
                    )

                    column_name = f'teamname_avg_{stat}_loss'
                    tables[column_name] = tables.apply(
                        lambda row: teamname_loss_stats[stat].get(row['teamname'], 0), 
                        axis=1
                    )
            
                tables['playername_avg_kill_share_win'] = tables['playername_avg_kills_win'] / tables['teamname_avg_kills_win']
                tables['playername_avg_death_share_win'] = tables['playername_avg_deaths_win'] / tables['teamname_avg_deaths_win']
                tables['playername_avg_assist_share_win'] = tables['playername_avg_assists_win'] / tables['teamname_avg_kills_win']
                tables['playername_avg_cs_share_win'] = tables['playername_avg_total_cs_win'] / tables['teamname_avg_total_cs_win']
                tables['playername_avg_kill_share_loss'] = tables['playername_avg_kills_loss'] / tables['teamname_avg_kills_loss']
                tables['playername_avg_death_share_loss'] = tables['playername_avg_deaths_loss'] / tables['teamname_avg_deaths_loss']
                tables['playername_avg_assist_share_loss'] = tables['playername_avg_assists_loss'] / tables['teamname_avg_kills_loss']
                tables['playername_avg_cs_share_loss'] = tables['playername_avg_total_cs_loss'] / tables['teamname_avg_total_cs_loss']
                player_tables = tables

            else:

                for stats in calc_columns:
                    league_pos_win_stats[stats] = {
                        league: group.groupby('position')[stats].mean().to_dict()
                        for league, group in tables[tables['result'] == 1].groupby('league')
                    }
                    league_pos_loss_stats[stats] = {
                        league: group.groupby('position')[stats].mean().to_dict()
                        for league, group in tables[tables['result'] == 0].groupby('league')
                    }
                    
                    Opponent_pos_win_allowed_stats[stats] = {
                        opponent: group.groupby('position')[stats].mean().to_dict()
                        for opponent, group in tables[tables['result'] == 1].groupby('Opponent')
                    }
                    Opponent_pos_loss_allowed_stats[stats] = {
                        opponent: group.groupby('position')[stats].mean().to_dict()
                        for opponent, group in tables[tables['result'] == 0].groupby('Opponent')
                    }

                for stat in calc_columns:

                    column_name = f'league_pos_avg_{stat}_win'
                    tables[column_name] = tables.apply(
                        lambda row: league_pos_win_stats[stat].get(row['league'], {}).get(row['position'], 0), 
                        axis=1
                    )
                    
                    column_name = f'league_pos_avg_{stat}_loss'
                    tables[column_name] = tables.apply(
                        lambda row: league_pos_loss_stats[stat].get(row['league'], {}).get(row['position'], 0), 
                        axis=1
                    )

                    column_name = f'Opponent_pos_avg_{stat}_allowed_win'
                    tables[column_name] = tables.apply(
                        lambda row: Opponent_pos_win_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0), 
                        axis=1
                    )

                    column_name = f'Opponent_pos_avg_{stat}_allowed_loss'
                    tables[column_name] = tables.apply(
                        lambda row: Opponent_pos_loss_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0), 
                        axis=1
                    )
                
                tables = tables[tables['Opponent'] == opponent]

                tables['overall_win_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_win'] / tables['league_pos_avg_kills_win']
                tables['overall_win_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_win'] / tables['league_pos_avg_deaths_win']
                tables['overall_win_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_win'] / tables['league_pos_avg_assists_win']
                tables['overall_win_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_win'] / tables['league_pos_avg_total_cs_win']
                tables['overall_loss_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_loss'] / tables['league_pos_avg_kills_loss']
                tables['overall_loss_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_loss'] / tables['league_pos_avg_deaths_loss']
                tables['overall_loss_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_loss'] / tables['league_pos_avg_assists_loss']
                tables['overall_loss_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_loss'] / tables['league_pos_avg_total_cs_loss']
                
                opp_tables = tables
                opp_pos_kills_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_kills_boost_pos']))
                opp_pos_deaths_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_deaths_boost_pos']))
                opp_pos_assists_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_assists_boost_pos']))
                opp_pos_cs_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_total_cs_boost_pos']))
                opp_pos_kills_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_kills_boost_pos']))
                opp_pos_deaths_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_deaths_boost_pos']))
                opp_pos_assists_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_assists_boost_pos']))
                opp_pos_cs_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_total_cs_boost_pos']))
                opp_boosts = pd.DataFrame({
                    'opp_pos_kills_boost_win': opp_pos_kills_boost_win,
                    'opp_pos_deaths_boost_win': opp_pos_deaths_boost_win,
                    'opp_pos_assists_boost_win': opp_pos_assists_boost_win,
                    'opp_pos_cs_boost_win': opp_pos_cs_boost_win,
                    'opp_pos_kills_boost_loss': opp_pos_kills_boost_loss,
                    'opp_pos_deaths_boost_loss': opp_pos_deaths_boost_loss,
                    'opp_pos_assists_boost_loss': opp_pos_assists_boost_loss,
                    'opp_pos_cs_boost_loss': opp_pos_cs_boost_loss
                }).set_index(pd.Index(list(opp_pos_kills_boost_win.keys()), name='position'))

        results_dict = {}

        for game in range(game_count):
            if kill_predictions[game] > 0:
                working_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kills_win', 'playername_avg_deaths_win', 'playername_avg_assists_win', 'playername_avg_total_cs_win',
                                        'playername_avg_kills_loss', 'playername_avg_deaths_loss', 'playername_avg_assists_loss', 'playername_avg_total_cs_loss']]
                working_tables = working_tables.rename(columns = {'playername_avg_kills_win': 'wKill%', 'playername_avg_deaths_win': 'wDeath%', 'playername_avg_assists_win': 'wAssist%',
                                                            'playername_avg_total_cs_win': 'wCS', 'playername_avg_kills_loss': 'lKill%', 'playername_avg_deaths_loss': 'lDeath%',
                                                            'playername_avg_assists_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
                team_data = working_tables.drop_duplicates(subset = ['playername'])
                team_data = working_tables.drop_duplicates(subset = ['position'])

                if win_loss_settings[game] == "Win":
                    raw_kills = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1)
                    raw_deaths = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1)
                    raw_assists = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1)
                    kill_scale = kill_predictions[game] / raw_kills.sum()
                    death_scale = death_predictions[game] / raw_deaths.sum()
                    team_data['Kill_Proj'] = raw_kills * kill_scale
                    team_data['Death_Proj'] = raw_deaths * death_scale
                    team_data['Assist_Proj'] = raw_assists * kill_scale
                    
                    team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1)
                    team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
                else:
                    raw_kills = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1)
                    raw_deaths = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1)
                    raw_assists = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1)
                    kill_scale = kill_predictions[game] / raw_kills.sum()
                    death_scale = death_predictions[game] / raw_deaths.sum()
                    team_data['Kill_Proj'] = raw_kills * kill_scale
                    team_data['Death_Proj'] = raw_deaths * death_scale
                    team_data['Assist_Proj'] = raw_assists * kill_scale
                    
                    team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
                    team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
            else:
                working_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kills_win', 'playername_avg_deaths_win', 'playername_avg_assists_win', 'playername_avg_total_cs_win',
                                        'playername_avg_kills_loss', 'playername_avg_deaths_loss', 'playername_avg_assists_loss', 'playername_avg_total_cs_loss']]
                working_tables = working_tables.rename(columns = {'playername_avg_kills_win': 'wKill%', 'playername_avg_deaths_win': 'wDeath%', 'playername_avg_assists_win': 'wAssist%',
                                                            'playername_avg_total_cs_win': 'wCS', 'playername_avg_kills_loss': 'lKill%', 'playername_avg_deaths_loss': 'lDeath%',
                                                            'playername_avg_assists_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
                team_data = working_tables.drop_duplicates(subset = ['playername'])
                team_data = working_tables.drop_duplicates(subset = ['position'])

                if win_loss_settings[game] == "Win":
                    team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1)
                    team_data['Death_Proj'] = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1)
                    team_data['Assist_Base'] = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1)
                    team_data['Assist_Proj'] = team_data['Assist_Base']
                    team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1)
                    team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
                else:
                    team_data['Kill_Proj'] = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1)
                    team_data['Death_Proj'] = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1)
                    team_data['Assist_Base'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1)
                    team_data['Assist_Proj'] = team_data['Assist_Base']
                    team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
                    team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
            
            results_dict[f'game {game + 1}'] = team_data.dropna()
            team_data['playername'] = team_data['playername'] + f' game {game + 1}'

            overall_team_data = pd.concat([overall_team_data, team_data])

        return overall_team_data.dropna().set_index('playername'), opp_boosts, results_dict, player_tables

@st.cache_data(ttl = 60)
def init_player_data(game_count, players, opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date):  
        game_count = game_count
        overall_team_data = pd.DataFrame(columns = ['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj'])
        # Convert date objects to datetime strings in the correct format
        start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
        end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S")

        collection = db["gamelogs"] 
        cursor = collection.find({"playername": {"$in": players}, "date": {"$gte": start_datetime, "$lte": end_datetime}})
        raw_display = pd.DataFrame(list(cursor))

        teams = raw_display['teamname'].unique().tolist()

        cursor = collection.find({"teamname": {"$in": teams}, "date": {"$gte": start_datetime, "$lte": end_datetime}})
        raw_team = pd.DataFrame(list(cursor))

        cursor = collection.find({"date": {"$gte": start_datetime, "$lte": end_datetime}})
        raw_opponent = pd.DataFrame(list(cursor))

        tables_to_loop = [raw_display, raw_opponent, raw_team]

        for loop in range(len(tables_to_loop)):
            tables = tables_to_loop[loop]
            calc_columns = ['kills', 'deaths', 'assists', 'total_cs']
            league_pos_win_stats = {}   
            league_pos_loss_stats = {}
            Opponent_pos_win_allowed_stats = {}
            Opponent_pos_loss_allowed_stats = {}
            playername_win_stats = {}
            playername_loss_stats = {}
            teamname_win_stats = {}
            teamname_loss_stats = {}

            if loop == 0:

                for stats in calc_columns:
                    playername_win_stats[stats] = tables[tables['result'] == 1].groupby(['playername'])[stats].mean().to_dict()
                    playername_loss_stats[stats] = tables[tables['result'] == 0].groupby(['playername'])[stats].mean().to_dict()
                    teamname_win_stats[stats] = tables[(tables['result'] == 1) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
                    teamname_loss_stats[stats] = tables[(tables['result'] == 0) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict() 

                for stat in calc_columns:

                    column_name = f'playername_avg_{stat}_win'
                    tables[column_name] = tables.apply(
                        lambda row: playername_win_stats[stat].get(row['playername'], 0), 
                        axis=1
                    )

                    column_name = f'playername_avg_{stat}_loss'
                    tables[column_name] = tables.apply(
                        lambda row: playername_loss_stats[stat].get(row['playername'], 0), 
                        axis=1
                    )

                    if loop == 2:
                        column_name = f'teamname_avg_{stat}_win'
                        tables[column_name] = tables.apply(
                            lambda row: teamname_win_stats[stat].get(row['teamname'], 0), 
                            axis=1
                        )

                        column_name = f'teamname_avg_{stat}_loss'
                        tables[column_name] = tables.apply(
                            lambda row: teamname_loss_stats[stat].get(row['teamname'], 0), 
                            axis=1
                        )
            
                tables['playername_avg_kill_share_win'] = tables['playername_avg_kills_win'] / tables['teamname_avg_kills_win']
                tables['playername_avg_death_share_win'] = tables['playername_avg_deaths_win'] / tables['teamname_avg_deaths_win']
                tables['playername_avg_assist_share_win'] = tables['playername_avg_assists_win'] / tables['teamname_avg_kills_win']
                tables['playername_avg_cs_share_win'] = tables['playername_avg_total_cs_win'] / tables['teamname_avg_total_cs_win']
                tables['playername_avg_kill_share_loss'] = tables['playername_avg_kills_loss'] / tables['teamname_avg_kills_loss']
                tables['playername_avg_death_share_loss'] = tables['playername_avg_deaths_loss'] / tables['teamname_avg_deaths_loss']
                tables['playername_avg_assist_share_loss'] = tables['playername_avg_assists_loss'] / tables['teamname_avg_kills_loss']
                tables['playername_avg_cs_share_loss'] = tables['playername_avg_total_cs_loss'] / tables['teamname_avg_total_cs_loss']
                player_tables = tables

            else:

                for stats in calc_columns:
                    league_pos_win_stats[stats] = {
                        league: group.groupby('position')[stats].mean().to_dict()
                        for league, group in tables[tables['result'] == 1].groupby('league')
                    }
                    league_pos_loss_stats[stats] = {
                        league: group.groupby('position')[stats].mean().to_dict()
                        for league, group in tables[tables['result'] == 0].groupby('league')
                    }
                    
                    Opponent_pos_win_allowed_stats[stats] = {
                        opponent: group.groupby('position')[stats].mean().to_dict()
                        for opponent, group in tables[tables['result'] == 1].groupby('Opponent')
                    }
                    Opponent_pos_loss_allowed_stats[stats] = {
                        opponent: group.groupby('position')[stats].mean().to_dict()
                        for opponent, group in tables[tables['result'] == 0].groupby('Opponent')
                    }

                for stat in calc_columns:

                    column_name = f'league_pos_avg_{stat}_win'
                    tables[column_name] = tables.apply(
                        lambda row: league_pos_win_stats[stat].get(row['league'], {}).get(row['position'], 0), 
                        axis=1
                    )
                    
                    column_name = f'league_pos_avg_{stat}_loss'
                    tables[column_name] = tables.apply(
                        lambda row: league_pos_loss_stats[stat].get(row['league'], {}).get(row['position'], 0), 
                        axis=1
                    )

                    column_name = f'Opponent_pos_avg_{stat}_allowed_win'
                    tables[column_name] = tables.apply(
                        lambda row: Opponent_pos_win_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0), 
                        axis=1
                    )

                    column_name = f'Opponent_pos_avg_{stat}_allowed_loss'
                    tables[column_name] = tables.apply(
                        lambda row: Opponent_pos_loss_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0), 
                        axis=1
                    )
                
                tables = tables[tables['Opponent'] == opponent]

                tables['overall_win_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_win'] / tables['league_pos_avg_kills_win']
                tables['overall_win_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_win'] / tables['league_pos_avg_deaths_win']
                tables['overall_win_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_win'] / tables['league_pos_avg_assists_win']
                tables['overall_win_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_win'] / tables['league_pos_avg_total_cs_win']
                tables['overall_loss_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_loss'] / tables['league_pos_avg_kills_loss']
                tables['overall_loss_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_loss'] / tables['league_pos_avg_deaths_loss']
                tables['overall_loss_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_loss'] / tables['league_pos_avg_assists_loss']
                tables['overall_loss_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_loss'] / tables['league_pos_avg_total_cs_loss']
                
                opp_tables = tables
                opp_pos_kills_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_kills_boost_pos']))
                opp_pos_deaths_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_deaths_boost_pos']))
                opp_pos_assists_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_assists_boost_pos']))
                opp_pos_cs_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_total_cs_boost_pos']))
                opp_pos_kills_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_kills_boost_pos']))
                opp_pos_deaths_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_deaths_boost_pos']))
                opp_pos_assists_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_assists_boost_pos']))
                opp_pos_cs_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_total_cs_boost_pos']))
                opp_boosts = pd.DataFrame({
                    'opp_pos_kills_boost_win': opp_pos_kills_boost_win,
                    'opp_pos_deaths_boost_win': opp_pos_deaths_boost_win,
                    'opp_pos_assists_boost_win': opp_pos_assists_boost_win,
                    'opp_pos_cs_boost_win': opp_pos_cs_boost_win,
                    'opp_pos_kills_boost_loss': opp_pos_kills_boost_loss,
                    'opp_pos_deaths_boost_loss': opp_pos_deaths_boost_loss,
                    'opp_pos_assists_boost_loss': opp_pos_assists_boost_loss,
                    'opp_pos_cs_boost_loss': opp_pos_cs_boost_loss
                }).set_index(pd.Index(list(opp_pos_kills_boost_win.keys()), name='position'))

        results_dict = {}

        for game in range(game_count):
            if kill_predictions[game] > 0:
                working_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kills_win', 'playername_avg_deaths_win', 'playername_avg_assists_win', 'playername_avg_total_cs_win',
                                        'playername_avg_kills_loss', 'playername_avg_deaths_loss', 'playername_avg_assists_loss', 'playername_avg_total_cs_loss']]
                working_tables = working_tables.rename(columns = {'playername_avg_kills_win': 'wKill%', 'playername_avg_deaths_win': 'wDeath%', 'playername_avg_assists_win': 'wAssist%',
                                                            'playername_avg_total_cs_win': 'wCS', 'playername_avg_kills_loss': 'lKill%', 'playername_avg_deaths_loss': 'lDeath%',
                                                            'playername_avg_assists_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
                team_data = working_tables.drop_duplicates(subset = ['playername'])
                team_data = working_tables.drop_duplicates(subset = ['position'])

                if win_loss_settings[game] == "Win":
                    raw_kills = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1)
                    raw_deaths = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1)
                    raw_assists = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1)
                    kill_scale = kill_predictions[game] / raw_kills.sum()
                    death_scale = death_predictions[game] / raw_deaths.sum()
                    team_data['Kill_Proj'] = raw_kills * kill_scale
                    team_data['Death_Proj'] = raw_deaths * death_scale
                    team_data['Assist_Proj'] = raw_assists * kill_scale
                    
                    team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1)
                    team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
                else:
                    raw_kills = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1)
                    raw_deaths = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1)
                    raw_assists = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1)
                    kill_scale = kill_predictions[game] / raw_kills.sum()
                    death_scale = death_predictions[game] / raw_deaths.sum()
                    team_data['Kill_Proj'] = raw_kills * kill_scale
                    team_data['Death_Proj'] = raw_deaths * death_scale
                    team_data['Assist_Proj'] = raw_assists * kill_scale
                    
                    team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
                    team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
            else:
                working_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kills_win', 'playername_avg_deaths_win', 'playername_avg_assists_win', 'playername_avg_total_cs_win',
                                        'playername_avg_kills_loss', 'playername_avg_deaths_loss', 'playername_avg_assists_loss', 'playername_avg_total_cs_loss']]
                working_tables = working_tables.rename(columns = {'playername_avg_kills_win': 'wKill%', 'playername_avg_deaths_win': 'wDeath%', 'playername_avg_assists_win': 'wAssist%',
                                                            'playername_avg_total_cs_win': 'wCS', 'playername_avg_kills_loss': 'lKill%', 'playername_avg_deaths_loss': 'lDeath%',
                                                            'playername_avg_assists_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
                team_data = working_tables.drop_duplicates(subset = ['playername'])

                if win_loss_settings[game] == "Win":
                    team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1)
                    team_data['Death_Proj'] = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1)
                    team_data['Assist_Base'] = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1)
                    team_data['Assist_Proj'] = team_data['Assist_Base']
                    team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1)
                    team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
                else:
                    team_data['Kill_Proj'] = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1)
                    team_data['Death_Proj'] = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1)
                    team_data['Assist_Base'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1)
                    team_data['Assist_Proj'] = team_data['Assist_Base']
                    team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
                    team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
            
            results_dict[f'game {game + 1}'] = team_data.dropna()
            team_data['playername'] = team_data['playername'] + f' game {game + 1}'

            overall_team_data = pd.concat([overall_team_data, team_data])

        return overall_team_data.dropna().set_index('playername'), opp_boosts, results_dict, player_tables

if st.button("Load/Reset Data", key='reset1'):
    st.cache_data.clear()
    for key in st.session_state.keys():
        del st.session_state[key]
                  
if st.button("Run"):
    if data_type == "Team":
        st.session_state.team_data, st.session_state.opp_boost, st.session_state.results_dict, st.session_state.gamelogs = init_team_data(game_count, selected_team, selected_opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date)
    else:
        st.session_state.team_data, st.session_state.opp_boost, st.session_state.results_dict, st.session_state.gamelogs = init_player_data(game_count, selected_players, selected_opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date)

    st.session_state.gamelogs_display = st.session_state.gamelogs[['date', 'teamname', 'Opponent', 'playername', 'position', 'result', 'kills', 'playername_avg_kills_win', 'playername_avg_kills_loss', 'deaths', 'playername_avg_deaths_win', 'playername_avg_deaths_loss', 'assists', 'playername_avg_assists_win', 'playername_avg_assists_loss', 'total_cs', 'playername_avg_total_cs_win', 'playername_avg_total_cs_loss', 'fantasy']]
    st.session_state.gamelogs_display = st.session_state.gamelogs_display.rename(columns = {'teamname': 'Team', 'Opponent': 'Opp', 'playername': 'Player',
                                                            'position': 'Pos', 'result': 'W/L', 'playername_avg_kills_win': 'Avg_Kill_Win',
                                                            'playername_avg_deaths_win': 'Avg_Death_Win', 'playername_avg_assists_win': 'Avg_Assist_Win', 'playername_avg_total_cs_win': 'Avg_CS_Win',
                                                            'playername_avg_kills_loss': 'Avg_Kill_Loss', 'playername_avg_deaths_loss': 'Avg_Death_Loss', 'playername_avg_assists_loss': 'Avg_Assist_Loss', 'playername_avg_total_cs_loss': 'Avg_CS_Loss',
                                                            'kills': 'Kill', 'deaths': 'Death', 'assists': 'Assist', 'total_cs': 'CS', 'fantasy': 'Fantasy'})
    st.session_state.gamelogs_display = st.session_state.gamelogs_display[st.session_state.gamelogs_display['Pos'] != 'team']
    st.session_state.gamelogs_display = st.session_state.gamelogs_display.sort_values(by = ['date'], ascending = False)
    st.session_state.gamelogs_display = st.session_state.gamelogs_display.reset_index(drop = True)
    st.session_state.gamelogs_display['Fantasy'] = st.session_state.gamelogs_display['Fantasy'].astype(float).round(2)
    st.session_state.player_summary = pd.DataFrame()
    
    for game_num in range(game_count):
        st.session_state.game_df = st.session_state.results_dict[f'game {game_num + 1}']  # Use correct dictionary key format
        # Remove 'game X' from playernames if present
        st.session_state.clean_df = st.session_state.game_df.copy()
        st.session_state.clean_df['playername'] = st.session_state.clean_df['playername'].str.split(' game ').str[0]
        
        if st.session_state.player_summary.empty:
            st.session_state.player_summary = st.session_state.clean_df
        else:
            # Add the stats to existing players
            for col in ['Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']:
                st.session_state.player_summary[col] += st.session_state.clean_df[col]
            # Update teamname and position if needed
            st.session_state.player_summary['teamname'].update(st.session_state.clean_df['teamname'])
            st.session_state.player_summary['position'].update(st.session_state.clean_df['position'])
    
    st.session_state.player_summary = st.session_state.player_summary.set_index('playername')

    # Create simulated percentiles
    individual_sim_results = []
    for idx, row in st.session_state.team_data.iterrows():
        percentiles = simulate_stats(row)
        individual_sim_results.append({
            'Player': idx,
            'Position': row['position'],
            'Stat': 'Kills',
            '10%': percentiles['Kill_Proj'][0],
            '25%': percentiles['Kill_Proj'][1],
            '50%': percentiles['Kill_Proj'][2],
            '75%': percentiles['Kill_Proj'][3],
            '90%': percentiles['Kill_Proj'][4]
        })
        # Repeat for other stats
        for stat, name in [('Death_Proj', 'Deaths'), ('Assist_Proj', 'Assists'), ('CS_Proj', 'CS')]:
            individual_sim_results.append({
                'Player': idx,
                'Position': row['position'],
                'Stat': name,
                '10%': percentiles[stat][0],
                '25%': percentiles[stat][1],
                '50%': percentiles[stat][2],
                '75%': percentiles[stat][3],
                '90%': percentiles[stat][4]
            })
    
    st.session_state.sim_df = pd.DataFrame(individual_sim_results)

    # Create simulated percentiles
    overall_sim_results = []
    for idx, row in st.session_state.player_summary.iterrows():
        percentiles = simulate_stats(row)
        overall_sim_results.append({
            'Player': idx,
            'Position': row['position'],
            'Stat': 'Kills',
            '10%': percentiles['Kill_Proj'][0],
            '25%': percentiles['Kill_Proj'][1],
            '50%': percentiles['Kill_Proj'][2],
            '75%': percentiles['Kill_Proj'][3],
            '90%': percentiles['Kill_Proj'][4]
        })
        # Repeat for other stats
        for stat, name in [('Death_Proj', 'Deaths'), ('Assist_Proj', 'Assists'), ('CS_Proj', 'CS')]:
            overall_sim_results.append({
                'Player': idx,
                'Position': row['position'],
                'Stat': name,
                '10%': percentiles[stat][0],
                '25%': percentiles[stat][1],
                '50%': percentiles[stat][2],
                '75%': percentiles[stat][3],
                '90%': percentiles[stat][4]
            })
    
    st.session_state.overall_sim_df = pd.DataFrame(overall_sim_results)
    st.session_state.overall_sim_df = st.session_state.overall_sim_df.drop_duplicates(subset = ['Player', 'Stat'])

tab1, tab2, tab3, tab4 = st.tabs(["Gamelogs", "Individual Game Data", "Opponent Boosts", "Full Match Data"])
with tab4:
    if 'player_summary' in st.session_state:
        st.subheader("Full Match Data")
        st.dataframe(st.session_state.player_summary.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)

    if 'overall_sim_df' in st.session_state:
        st.subheader("Overall Simulations")
        stat_tabs = st.tabs(["Kills", "Deaths", "Assists", "CS"])
    
        for stat, tab in zip(["Kills", "Deaths", "Assists", "CS"], stat_tabs):
            with tab:
                st.session_state.stat_data = st.session_state.overall_sim_df[st.session_state.overall_sim_df['Stat'] == stat].copy()
                st.session_state.stat_data = st.session_state.stat_data.set_index('Player')[['Position', '10%', '25%', '50%', '75%', '90%']]
                st.dataframe(
                    st.session_state.stat_data.style.format(precision=2).background_gradient(axis=0).background_gradient(cmap='RdYlGn'),
                    use_container_width=True
                )
    
        st.subheader("Prop Check")
        col1, col2 = st.columns([2, 8])
        with col1:
            prop_var = st.number_input("Enter Prop Value", min_value=0.0, max_value=100.0, value=4.5, step=0.5)
            stat_choice = st.selectbox("Select Stat", ["Kills", "Deaths", "Assists", "CS"])
        with col2:
            # Filter data for selected stat
            st.session_state.stat_data = st.session_state.overall_sim_df[st.session_state.overall_sim_df['Stat'] == stat_choice].copy()
            
            # Calculate mean and standard deviation using percentiles
            # Using the fact that in a normal distribution:
            # 10th percentile is -1.28 SD from mean
            # 90th percentile is 1.28 SD from mean
            st.session_state.stat_data['mean'] = (st.session_state.stat_data['90%'] + st.session_state.stat_data['10%']) / 2
            st.session_state.stat_data['std'] = (st.session_state.stat_data['90%'] - st.session_state.stat_data['10%']) / (2 * 1.28)
            
            # Calculate probabilities
            st.session_state.stat_data['over_prob'] = st.session_state.stat_data.apply(
                lambda x: 1 - stats.norm.cdf(prop_var, x['mean'], x['std']), axis=1
            )
            st.session_state.stat_data['under_prob'] = st.session_state.stat_data.apply(
                lambda x: stats.norm.cdf(prop_var, x['mean'], x['std']), axis=1
            )
            
            # Prepare display dataframe
            st.session_state.display_df = st.session_state.stat_data[['Player', 'Position', 'over_prob', 'under_prob']].copy()
            st.session_state.display_df['Over %'] = (st.session_state.display_df['over_prob']).round(2)
            st.session_state.display_df['Under %'] = (st.session_state.display_df['under_prob']).round(2)
            
            # Display results
            st.dataframe(
                st.session_state.display_df[['Player', 'Position', 'Over %', 'Under %']]
                .set_index('Player')
                .style.background_gradient(subset=['Over %', 'Under %'], cmap='RdYlGn').format(display_formats, precision=2),
                use_container_width=True
            )

with tab2:
    if 'team_data' in st.session_state:
        st.subheader("Individual Game Data")
        st.dataframe(st.session_state.team_data.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)

    if 'sim_df' in st.session_state:
        st.subheader("Individual Game Simulations")
        unique_players = st.session_state.sim_df['Player'].unique().tolist()
        player_tabs = st.tabs(unique_players)
        
        for player, tab in zip(unique_players, player_tabs):
            with tab:
                player_data = st.session_state.sim_df[st.session_state.sim_df['Player'] == player]
                player_data = player_data.set_index('Stat')
                st.dataframe(
                    player_data[['10%', '25%', '50%', '75%', '90%']]
                    .style.format(precision=2),
                    use_container_width=True
                )

with tab3:
    if 'opp_boost' in st.session_state:
        st.subheader("Opponent Boosts")
        st.dataframe(st.session_state.opp_boost.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)

with tab1:
    if 'gamelogs_display' in st.session_state:
        st.subheader("Gamelogs")
        with st.container():
            col1, col2, col3 = st.columns([4, 4, 4])
            with col1:
                player_toggle = st.selectbox("Do you want to view all players or just one?", ['All', 'One'])
            with col2:
                if player_toggle == 'One':
                    player_search = st.selectbox("Search for a player", st.session_state.gamelogs_display['Player'].unique().tolist())
                else:
                    player_search = 'All'
            with col3:
                scenario_search = st.selectbox("Wins, Losses, or All games?", ['All', 'Wins', 'Losses'])
        
        if player_toggle == 'One':
            st.session_state.gamelogs_final = st.session_state.gamelogs_display[st.session_state.gamelogs_display['Player'] == player_search]
        else:
            st.session_state.gamelogs_final = st.session_state.gamelogs_display
        if scenario_search == 'Wins':
            st.session_state.gamelogs_final = st.session_state.gamelogs_final[st.session_state.gamelogs_final['W/L'] == 1]
        elif scenario_search == 'Losses':
            st.session_state.gamelogs_final = st.session_state.gamelogs_final[st.session_state.gamelogs_final['W/L'] == 0]
        else:
            st.session_state.gamelogs_final = st.session_state.gamelogs_final

        st.dataframe(st.session_state.gamelogs_final.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)