Spaces:
Running
Running
File size: 23,998 Bytes
1021da9 e353ca4 1021da9 e353ca4 1021da9 e353ca4 1021da9 0a29ddd 1021da9 e353ca4 1021da9 e353ca4 12804c6 e353ca4 12804c6 e353ca4 12804c6 6900faf 6fa8eec e353ca4 6900faf e353ca4 a085b3b e353ca4 6900faf e353ca4 a085b3b e353ca4 a25e372 24d694e 1021da9 f6721c0 dcc4ea4 f6721c0 a25e372 f6721c0 a25e372 f6721c0 a25e372 1021da9 cf9e7c2 1021da9 6900faf 8d20291 dcc4ea4 8d20291 dcc4ea4 8d20291 a25e372 8d20291 a25e372 8d20291 a25e372 8d20291 a25e372 68b8a20 8d20291 a25e372 436ee56 a25e372 40cfac2 a25e372 40cfac2 a25e372 436ee56 a25e372 40cfac2 a25e372 40cfac2 a25e372 436ee56 a25e372 436ee56 a25e372 436ee56 a25e372 436ee56 8d20291 a25e372 436ee56 a25e372 436ee56 a25e372 3571793 a25e372 3571793 a25e372 1021da9 e353ca4 dcc4ea4 e353ca4 8d20291 e353ca4 a25e372 8d20291 e353ca4 8d20291 e353ca4 8d20291 e353ca4 8d20291 e353ca4 8d20291 e353ca4 a25e372 e353ca4 8d20291 e353ca4 8d20291 e353ca4 8d20291 e353ca4 a25e372 e353ca4 8d20291 e353ca4 8d20291 e353ca4 8d20291 e353ca4 8d20291 e353ca4 8d20291 e353ca4 8d20291 e353ca4 8d20291 e353ca4 8d20291 e353ca4 8d20291 e353ca4 8d20291 e353ca4 8d20291 e353ca4 8d20291 e353ca4 8d20291 e353ca4 8d20291 e353ca4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import pymongo
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["MLB_Database"]
db2 = client["MLB_DFS"]
return db, db2
db, db2 = init_conn()
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
'4x%': '{:.2%}'}
dk_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']
fd_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']
st.markdown("""
<style>
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
padding: 4px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #DAA520;
color: white;
border-radius: 10px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stTabs [aria-selected="true"] {
background-color: #DAA520;
border: 3px solid #FFD700;
color: white;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #FFD700;
cursor: pointer;
}
</style>""", unsafe_allow_html=True)
@st.cache_resource(ttl = 60)
def init_baselines():
collection = db["Player_Range_Of_Outcomes"]
cursor = collection.find()
player_frame = pd.DataFrame(cursor)
roo_data = player_frame.drop(columns=['_id'])
roo_data['Salary'] = roo_data['Salary'].astype(int)
collection = db["Player_SD_Range_Of_Outcomes"]
cursor = collection.find()
player_frame = pd.DataFrame(cursor)
sd_roo_data = player_frame.drop(columns=['_id'])
sd_roo_data['Salary'] = sd_roo_data['Salary'].astype(int)
collection = db["Scoring_Percentages"]
cursor = collection.find()
team_frame = pd.DataFrame(cursor)
scoring_percentages = team_frame.drop(columns=['_id'])
scoring_percentages = scoring_percentages[['Names', 'Avg First Inning', 'First Inning Lead Percentage', 'Avg Fifth Inning', 'Fifth Inning Lead Percentage', 'Avg Score', '8+ runs', 'Win Percentage']]
scoring_percentages['8+ runs'] = scoring_percentages['8+ runs'].replace('%', '', regex=True).astype(float) / 100
scoring_percentages['Win Percentage'] = scoring_percentages['Win Percentage'].replace('%', '', regex=True).astype(float) / 100
return roo_data, sd_roo_data, scoring_percentages
@st.cache_data(ttl = 60)
def init_DK_lineups():
collection = db2['DK_MLB_SD1_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']]
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 60)
def init_FD_lineups():
collection = db2['FD_MLB_SD1_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']]
FD_seed = raw_display.to_numpy()
return FD_seed
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
@st.cache_data
def convert_df(array):
array = pd.DataFrame(array, columns=column_names)
return array.to_csv().encode('utf-8')
roo_data, sd_roo_data, scoring_percentages = init_baselines()
hold_display = roo_data
view_var = st.radio("Select view", ["Simple", "Advanced"])
tab1, tab2, tab3 = st.tabs(["Scoring Percentages", "Player ROO", "Optimals"])
with tab1:
with st.expander("Info and Filters"):
col1, col2, col3, col4 = st.columns([3, 3, 3, 3])
with col1:
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
roo_data, sd_roo_data, scoring_percentages = init_baselines()
hold_display = roo_data
dk_lineups = init_DK_lineups('Main')
fd_lineups = init_FD_lineups('Main')
for key in st.session_state.keys():
del st.session_state[key]
with col2:
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
with col3:
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'All Games'), key='slate_var1')
with col4:
own_var1 = st.radio("How would you like to display team ownership?", ('Sum', 'Average'), key='own_var1')
st.title("Scoring Percentages")
if view_var == "Simple":
scoring_percentages = scoring_percentages[['Names', 'Avg Score', '8+ runs', 'Win Percentage']]
st.dataframe(scoring_percentages.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), height=750, use_container_width = True, hide_index=True)
elif view_var == "Advanced":
st.dataframe(scoring_percentages.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), height=750, use_container_width = True, hide_index=True)
with tab2:
st.title("Player ROO")
with st.expander("Info and Filters"):
col1, col2, col3, col4, col5 = st.columns([3, 3, 3, 3, 3])
with col1:
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
roo_data, sd_roo_data, scoring_percentages = init_baselines()
hold_display = roo_data
dk_lineups = init_DK_lineups('Main')
fd_lineups = init_FD_lineups('Main')
for key in st.session_state.keys():
del st.session_state[key]
with col2:
site_var2 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var2')
with col3:
slate_type_var2 = st.radio("Which slate type are you loading?", ('Regular', 'Showdown'), key='slate_type_var2')
with col4:
slate_var2 = st.radio("Which slate data are you loading?", ('Main', 'Secondary', 'Auxiliary'), key='slate_var2')
with col5:
pos_var2 = st.radio("Which position group would you like to view?", ('All', 'Pitchers', 'Hitters'), key='pos_var2')
if slate_type_var2 == 'Regular':
player_roo_raw = roo_data.copy()
if site_var2 == 'Draftkings':
player_roo_raw['Site'] = 'Draftkings'
if pos_var2 == 'All':
pass
elif pos_var2 == 'Pitchers':
player_roo_raw = player_roo_raw[player_roo_raw['Position'] == 'SP']
elif pos_var2 == 'Hitters':
player_roo_raw = player_roo_raw[player_roo_raw['Position'] != 'SP']
elif site_var2 == 'Fanduel':
player_roo_raw['Site'] = 'Fanduel'
if pos_var2 == 'All':
pass
elif pos_var2 == 'Pitchers':
player_roo_raw = player_roo_raw[player_roo_raw['Position'] == 'P']
elif pos_var2 == 'Hitters':
player_roo_raw = player_roo_raw[player_roo_raw['Position'] != 'P']
if slate_var2 == 'Main':
player_roo_raw = player_roo_raw[player_roo_raw['Slate'] == 'Main']
elif slate_var2 == 'Secondary':
player_roo_raw = player_roo_raw[player_roo_raw['Slate'] == 'Secondary']
elif slate_var2 == 'Auxiliary':
player_roo_raw = player_roo_raw[player_roo_raw['Slate'] == 'Auxiliary']
elif slate_type_var2 == 'Showdown':
player_roo_raw = sd_roo_data.copy()
if site_var2 == 'Draftkings':
player_roo_raw['Site'] = 'Draftkings'
elif site_var2 == 'Fanduel':
player_roo_raw['Site'] = 'Fanduel'
player_roo_raw = player_roo_raw.drop(columns=['site', 'slate', 'version', 'timestamp'])
if view_var == "Simple":
st.session_state['player_roo'] = st.session_state['player_roo'][['Player', 'Position', 'Salary', 'Median', 'Ceiling', 'Own']]
st.dataframe(st.session_state['player_roo'].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True, hide_index=True)
elif view_var == "Advanced":
st.dataframe(st.session_state['player_roo'].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True, hide_index=True)
with tab3:
with st.expander("Info and Filters"):
if st.button("Load/Reset Data", key='reset3'):
st.cache_data.clear()
roo_data, sd_roo_data, scoring_percentages = init_baselines()
hold_display = roo_data
dk_lineups = init_DK_lineups('Main')
fd_lineups = init_FD_lineups('Main')
for key in st.session_state.keys():
del st.session_state[key]
site_var3 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var3')
slate_type_var3 = st.radio("Which slate type are you loading?", ('Regular', 'Showdown'), key='slate_type_var3')
slate_var3 = st.radio("Which slate data are you loading?", ('Main', 'Secondary', 'Auxiliary'), key='slate_var3')
if slate_type_var3 == 'Regular':
if site_var3 == 'Draftkings':
dk_lineups = init_DK_lineups(slate_var3)
elif site_var3 == 'Fanduel':
fd_lineups = init_FD_lineups(slate_var3)
elif slate_type_var3 == 'Showdown':
if site_var3 == 'Draftkings':
dk_lineups = init_DK_lineups(slate_var3)
elif site_var3 == 'Fanduel':
fd_lineups = init_FD_lineups(slate_var3)
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
if slate_type_var3 == 'Regular':
raw_baselines = roo_data
elif slate_type_var3 == 'Showdown':
raw_baselines = sd_roo_data
if site_var3 == 'Draftkings':
if slate_type_var3 == 'Regular':
ROO_slice = raw_baselines[raw_baselines['Site'] == 'Draftkings']
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
elif slate_type_var3 == 'Showdown':
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
# Get the minimum and maximum ownership values from dk_lineups
min_own = np.min(dk_lineups[:,8])
max_own = np.max(dk_lineups[:,8])
column_names = dk_columns
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
if player_var1 == 'Specific Players':
player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique())
elif player_var1 == 'Full Slate':
player_var2 = raw_baselines.Player.values.tolist()
elif site_var3 == 'Fanduel':
raw_baselines = hold_display
if slate_type_var3 == 'Regular':
ROO_slice = raw_baselines[raw_baselines['Site'] == 'Fanduel']
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
elif slate_type_var3 == 'Showdown':
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
min_own = np.min(fd_lineups[:,8])
max_own = np.max(fd_lineups[:,8])
column_names = fd_columns
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
if player_var1 == 'Specific Players':
player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique())
elif player_var1 == 'Full Slate':
player_var2 = raw_baselines.Player.values.tolist()
if st.button("Prepare data export", key='data_export'):
data_export = st.session_state.working_seed.copy()
# if site_var3 == 'Draftkings':
# for col_idx in range(6):
# data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
# elif site_var3 == 'Fanduel':
# for col_idx in range(6):
# data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
st.download_button(
label="Export optimals set",
data=convert_df(data_export),
file_name='MLB_optimals_export.csv',
mime='text/csv',
)
if site_var3 == 'Draftkings':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = dk_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
st.session_state.working_seed = dk_lineups.copy()
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = dk_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif site_var3 == 'Fanduel':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = fd_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
st.session_state.working_seed = fd_lineups.copy()
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = fd_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
export_file = st.session_state.data_export_display.copy()
# if site_var3 == 'Draftkings':
# for col_idx in range(6):
# export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
# elif site_var3 == 'Fanduel':
# for col_idx in range(6):
# export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
with st.container():
if st.button("Reset Optimals", key='reset3'):
for key in st.session_state.keys():
del st.session_state[key]
if site_var3 == 'Draftkings':
st.session_state.working_seed = dk_lineups.copy()
elif site_var3 == 'Fanduel':
st.session_state.working_seed = fd_lineups.copy()
if 'data_export_display' in st.session_state:
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
st.download_button(
label="Export display optimals",
data=convert_df(export_file),
file_name='MLB_display_optimals.csv',
mime='text/csv',
)
with st.container():
if 'working_seed' in st.session_state:
# Create a new dataframe with summary statistics
if site_var3 == 'Draftkings':
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
np.min(st.session_state.working_seed[:,6]),
np.mean(st.session_state.working_seed[:,6]),
np.max(st.session_state.working_seed[:,6]),
np.std(st.session_state.working_seed[:,6])
],
'Proj': [
np.min(st.session_state.working_seed[:,7]),
np.mean(st.session_state.working_seed[:,7]),
np.max(st.session_state.working_seed[:,7]),
np.std(st.session_state.working_seed[:,7])
],
'Own': [
np.min(st.session_state.working_seed[:,8]),
np.mean(st.session_state.working_seed[:,8]),
np.max(st.session_state.working_seed[:,8]),
np.std(st.session_state.working_seed[:,8])
]
})
elif site_var3 == 'Fanduel':
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
np.min(st.session_state.working_seed[:,6]),
np.mean(st.session_state.working_seed[:,6]),
np.max(st.session_state.working_seed[:,6]),
np.std(st.session_state.working_seed[:,6])
],
'Proj': [
np.min(st.session_state.working_seed[:,7]),
np.mean(st.session_state.working_seed[:,7]),
np.max(st.session_state.working_seed[:,7]),
np.std(st.session_state.working_seed[:,7])
],
'Own': [
np.min(st.session_state.working_seed[:,8]),
np.mean(st.session_state.working_seed[:,8]),
np.max(st.session_state.working_seed[:,8]),
np.std(st.session_state.working_seed[:,8])
]
})
# Set the index of the summary dataframe as the "Metric" column
summary_df = summary_df.set_index('Metric')
# Display the summary dataframe
st.subheader("Optimal Statistics")
st.dataframe(summary_df.style.format({
'Salary': '{:.2f}',
'Proj': '{:.2f}',
'Own': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)
with st.container():
tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
with tab1:
if 'data_export_display' in st.session_state:
if site_var3 == 'Draftkings':
player_columns = st.session_state.data_export_display.iloc[:, :6]
elif site_var3 == 'Fanduel':
player_columns = st.session_state.data_export_display.iloc[:, :6]
# Flatten the DataFrame and count unique values
value_counts = player_columns.values.flatten().tolist()
value_counts = pd.Series(value_counts).value_counts()
percentages = (value_counts / lineup_num_var * 100).round(2)
# Create a DataFrame with the results
summary_df = pd.DataFrame({
'Player': value_counts.index,
'Frequency': value_counts.values,
'Percentage': percentages.values
})
# Sort by frequency in descending order
summary_df['Salary'] = summary_df['Player'].map(player_salaries)
summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
summary_df = summary_df.sort_values('Frequency', ascending=False)
summary_df = summary_df.set_index('Player')
# Display the table
st.write("Player Frequency Table:")
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
st.download_button(
label="Export player frequency",
data=convert_df_to_csv(summary_df),
file_name='MLB_player_frequency.csv',
mime='text/csv',
)
with tab2:
if 'working_seed' in st.session_state:
if site_var3 == 'Draftkings':
player_columns = st.session_state.working_seed[:, :6]
elif site_var3 == 'Fanduel':
player_columns = st.session_state.working_seed[:, :6]
# Flatten the DataFrame and count unique values
value_counts = player_columns.flatten().tolist()
value_counts = pd.Series(value_counts).value_counts()
percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
# Create a DataFrame with the results
summary_df = pd.DataFrame({
'Player': value_counts.index,
'Frequency': value_counts.values,
'Percentage': percentages.values
})
# Sort by frequency in descending order
summary_df['Salary'] = summary_df['Player'].map(player_salaries)
summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
summary_df = summary_df.sort_values('Frequency', ascending=False)
summary_df = summary_df.set_index('Player')
# Display the table
st.write("Seed Frame Frequency Table:")
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
st.download_button(
label="Export seed frame frequency",
data=convert_df_to_csv(summary_df),
file_name='MLB_seed_frame_frequency.csv',
mime='text/csv',
)
|