MLB_DFS_ROO / app.py
James McCool
Enhance app.py with dual database connections and implement caching for baseline data and lineups. Added functionality for data export and player frequency analysis, improving user interaction with new UI elements.
e353ca4
raw
history blame
18.5 kB
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import pymongo
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["MLB_Database"]
db2 = client["MLB_DFS"]
return db, db2
db, db2 = init_conn()
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
'4x%': '{:.2%}'}
dk_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']
fd_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']
st.markdown("""
<style>
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
padding: 4px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #DAA520;
color: white;
border-radius: 10px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stTabs [aria-selected="true"] {
background-color: #DAA520;
border: 3px solid #FFD700;
color: white;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #FFD700;
cursor: pointer;
}
</style>""", unsafe_allow_html=True)
@st.cache_resource(ttl = 60)
def init_baselines():
collection = db["Player_Range_Of_Outcomes"]
cursor = collection.find()
player_frame = pd.DataFrame(cursor)
timestamp = player_frame['Timestamp'][0]
roo_data = player_frame.drop(columns=['_id', 'index', 'timestamp'])
roo_data['Salary'] = roo_data['Salary'].astype(int)
collection = db["Player_SD_Range_Of_Outcomes"]
cursor = collection.find()
player_frame = pd.DataFrame(cursor)
sd_roo_data = player_frame.drop(columns=['_id', 'index'])
sd_roo_data['Salary'] = sd_roo_data['Salary'].astype(int)
collection = db["Scoring_Percentages"]
cursor = collection.find()
team_frame = pd.DataFrame(cursor)
scoring_percentages = team_frame.drop(columns=['_id', 'index'])
return roo_data, sd_roo_data, scoring_percentages
@st.cache_data(ttl = 60)
def init_DK_lineups():
collection = db['DK_MLB_SD1_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']]
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 60)
def init_FD_lineups():
collection = db['FD_MLB_SD1_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']]
FD_seed = raw_display.to_numpy()
return FD_seed
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
@st.cache_data
def convert_df(array):
array = pd.DataFrame(array, columns=column_names)
return array.to_csv().encode('utf-8')
roo_data, sd_roo_data, scoring_percentages = init_baselines()
hold_display = roo_data
view_var = st.radio("Select view", ["Simple", "Advanced"])
tab1, tab2, tab3 = st.tabs(["Scoring Percentages", "Player ROO", "Optimals"])
with tab1:
st.title("Scoring Percentages")
st.dataframe(scoring_percentages)
with tab2:
st.title("Player ROO")
st.dataframe(sd_roo_data)
with tab3:
with st.expander("Info and Filters"):
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
roo_data, sd_roo_data, scoring_percentages = init_baselines()
hold_display = roo_data
dk_lineups = init_DK_lineups()
fd_lineups = init_FD_lineups()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
for key in st.session_state.keys():
del st.session_state[key]
slate_var1 = st.radio("Which data are you loading?", ('Regular', 'Showdown'))
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
if slate_var1 == 'Regular':
if site_var1 == 'Draftkings':
dk_lineups = init_DK_lineups()
elif site_var1 == 'Fanduel':
fd_lineups = init_FD_lineups()
elif slate_var1 == 'Showdown':
if site_var1 == 'Draftkings':
dk_lineups = init_DK_lineups()
elif site_var1 == 'Fanduel':
fd_lineups = init_FD_lineups()
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
if slate_var1 == 'Regular':
raw_baselines = roo_data
elif slate_var1 == 'Showdown':
raw_baselines = sd_roo_data
if site_var1 == 'Draftkings':
if slate_var1 == 'Regular':
ROO_slice = raw_baselines[raw_baselines['Site'] == 'Draftkings']
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
elif slate_var1 == 'Showdown':
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
# Get the minimum and maximum ownership values from dk_lineups
min_own = np.min(dk_lineups[:,8])
max_own = np.max(dk_lineups[:,8])
column_names = dk_columns
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
if player_var1 == 'Specific Players':
player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique())
elif player_var1 == 'Full Slate':
player_var2 = raw_baselines.Player.values.tolist()
elif site_var1 == 'Fanduel':
raw_baselines = hold_display
if slate_var1 == 'Regular':
ROO_slice = raw_baselines[raw_baselines['Site'] == 'Fanduel']
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
elif slate_var1 == 'Showdown':
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
min_own = np.min(fd_lineups[:,8])
max_own = np.max(fd_lineups[:,8])
column_names = fd_columns
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
if player_var1 == 'Specific Players':
player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique())
elif player_var1 == 'Full Slate':
player_var2 = raw_baselines.Player.values.tolist()
if st.button("Prepare data export", key='data_export'):
data_export = st.session_state.working_seed.copy()
# if site_var1 == 'Draftkings':
# for col_idx in range(6):
# data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
# elif site_var1 == 'Fanduel':
# for col_idx in range(6):
# data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
st.download_button(
label="Export optimals set",
data=convert_df(data_export),
file_name='MLB_optimals_export.csv',
mime='text/csv',
)
if site_var1 == 'Draftkings':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = dk_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
st.session_state.working_seed = dk_lineups.copy()
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = dk_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif site_var1 == 'Fanduel':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = fd_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
st.session_state.working_seed = fd_lineups.copy()
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = fd_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
export_file = st.session_state.data_export_display.copy()
# if site_var1 == 'Draftkings':
# for col_idx in range(6):
# export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
# elif site_var1 == 'Fanduel':
# for col_idx in range(6):
# export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
with st.container():
if st.button("Reset Optimals", key='reset3'):
for key in st.session_state.keys():
del st.session_state[key]
if site_var1 == 'Draftkings':
st.session_state.working_seed = dk_lineups.copy()
elif site_var1 == 'Fanduel':
st.session_state.working_seed = fd_lineups.copy()
if 'data_export_display' in st.session_state:
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
st.download_button(
label="Export display optimals",
data=convert_df(export_file),
file_name='MLB_display_optimals.csv',
mime='text/csv',
)
with st.container():
if 'working_seed' in st.session_state:
# Create a new dataframe with summary statistics
if site_var1 == 'Draftkings':
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
np.min(st.session_state.working_seed[:,6]),
np.mean(st.session_state.working_seed[:,6]),
np.max(st.session_state.working_seed[:,6]),
np.std(st.session_state.working_seed[:,6])
],
'Proj': [
np.min(st.session_state.working_seed[:,7]),
np.mean(st.session_state.working_seed[:,7]),
np.max(st.session_state.working_seed[:,7]),
np.std(st.session_state.working_seed[:,7])
],
'Own': [
np.min(st.session_state.working_seed[:,8]),
np.mean(st.session_state.working_seed[:,8]),
np.max(st.session_state.working_seed[:,8]),
np.std(st.session_state.working_seed[:,8])
]
})
elif site_var1 == 'Fanduel':
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
np.min(st.session_state.working_seed[:,6]),
np.mean(st.session_state.working_seed[:,6]),
np.max(st.session_state.working_seed[:,6]),
np.std(st.session_state.working_seed[:,6])
],
'Proj': [
np.min(st.session_state.working_seed[:,7]),
np.mean(st.session_state.working_seed[:,7]),
np.max(st.session_state.working_seed[:,7]),
np.std(st.session_state.working_seed[:,7])
],
'Own': [
np.min(st.session_state.working_seed[:,8]),
np.mean(st.session_state.working_seed[:,8]),
np.max(st.session_state.working_seed[:,8]),
np.std(st.session_state.working_seed[:,8])
]
})
# Set the index of the summary dataframe as the "Metric" column
summary_df = summary_df.set_index('Metric')
# Display the summary dataframe
st.subheader("Optimal Statistics")
st.dataframe(summary_df.style.format({
'Salary': '{:.2f}',
'Proj': '{:.2f}',
'Own': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)
with st.container():
tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
with tab1:
if 'data_export_display' in st.session_state:
if site_var1 == 'Draftkings':
player_columns = st.session_state.data_export_display.iloc[:, :6]
elif site_var1 == 'Fanduel':
player_columns = st.session_state.data_export_display.iloc[:, :6]
# Flatten the DataFrame and count unique values
value_counts = player_columns.values.flatten().tolist()
value_counts = pd.Series(value_counts).value_counts()
percentages = (value_counts / lineup_num_var * 100).round(2)
# Create a DataFrame with the results
summary_df = pd.DataFrame({
'Player': value_counts.index,
'Frequency': value_counts.values,
'Percentage': percentages.values
})
# Sort by frequency in descending order
summary_df['Salary'] = summary_df['Player'].map(player_salaries)
summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
summary_df = summary_df.sort_values('Frequency', ascending=False)
summary_df = summary_df.set_index('Player')
# Display the table
st.write("Player Frequency Table:")
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
st.download_button(
label="Export player frequency",
data=convert_df_to_csv(summary_df),
file_name='MLB_player_frequency.csv',
mime='text/csv',
)
with tab2:
if 'working_seed' in st.session_state:
if site_var1 == 'Draftkings':
player_columns = st.session_state.working_seed[:, :6]
elif site_var1 == 'Fanduel':
player_columns = st.session_state.working_seed[:, :6]
# Flatten the DataFrame and count unique values
value_counts = player_columns.flatten().tolist()
value_counts = pd.Series(value_counts).value_counts()
percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
# Create a DataFrame with the results
summary_df = pd.DataFrame({
'Player': value_counts.index,
'Frequency': value_counts.values,
'Percentage': percentages.values
})
# Sort by frequency in descending order
summary_df['Salary'] = summary_df['Player'].map(player_salaries)
summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
summary_df = summary_df.sort_values('Frequency', ascending=False)
summary_df = summary_df.set_index('Player')
# Display the table
st.write("Seed Frame Frequency Table:")
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
st.download_button(
label="Export seed frame frequency",
data=convert_df_to_csv(summary_df),
file_name='MLB_seed_frame_frequency.csv',
mime='text/csv',
)