Spaces:
Running
Running
James McCool
commited on
Commit
·
c2420ef
1
Parent(s):
311d2c7
Update app.py to adjust column indices for player metrics in DraftKings and FanDuel sections, ensuring accurate data retrieval and enhancing the overall functionality of the application.
Browse files
app.py
CHANGED
@@ -478,44 +478,44 @@ with tab3:
|
|
478 |
summary_df = pd.DataFrame({
|
479 |
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
480 |
'Salary': [
|
481 |
-
np.min(st.session_state.working_seed[:,
|
482 |
-
np.mean(st.session_state.working_seed[:,
|
483 |
-
np.max(st.session_state.working_seed[:,
|
484 |
-
np.std(st.session_state.working_seed[:,
|
485 |
],
|
486 |
'Proj': [
|
487 |
-
np.min(st.session_state.working_seed[:,
|
488 |
-
np.mean(st.session_state.working_seed[:,
|
489 |
-
np.max(st.session_state.working_seed[:,
|
490 |
-
np.std(st.session_state.working_seed[:,
|
491 |
],
|
492 |
'Own': [
|
493 |
-
np.min(st.session_state.working_seed[:,
|
494 |
-
np.mean(st.session_state.working_seed[:,
|
495 |
-
np.max(st.session_state.working_seed[:,
|
496 |
-
np.std(st.session_state.working_seed[:,
|
497 |
]
|
498 |
})
|
499 |
elif site_var == 'Fanduel':
|
500 |
summary_df = pd.DataFrame({
|
501 |
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
502 |
'Salary': [
|
503 |
-
np.min(st.session_state.working_seed[:,6]),
|
504 |
-
np.mean(st.session_state.working_seed[:,6]),
|
505 |
-
np.max(st.session_state.working_seed[:,6]),
|
506 |
-
np.std(st.session_state.working_seed[:,6])
|
507 |
-
],
|
508 |
-
'Proj': [
|
509 |
-
np.min(st.session_state.working_seed[:,7]),
|
510 |
-
np.mean(st.session_state.working_seed[:,7]),
|
511 |
-
np.max(st.session_state.working_seed[:,7]),
|
512 |
-
np.std(st.session_state.working_seed[:,7])
|
513 |
-
],
|
514 |
-
'Own': [
|
515 |
np.min(st.session_state.working_seed[:,8]),
|
516 |
np.mean(st.session_state.working_seed[:,8]),
|
517 |
np.max(st.session_state.working_seed[:,8]),
|
518 |
np.std(st.session_state.working_seed[:,8])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
519 |
]
|
520 |
})
|
521 |
|
@@ -535,9 +535,9 @@ with tab3:
|
|
535 |
with tab1:
|
536 |
if 'data_export_display' in st.session_state:
|
537 |
if site_var == 'Draftkings':
|
538 |
-
player_columns = st.session_state.data_export_display.iloc[:, :
|
539 |
elif site_var == 'Fanduel':
|
540 |
-
player_columns = st.session_state.data_export_display.iloc[:, :
|
541 |
|
542 |
# Flatten the DataFrame and count unique values
|
543 |
value_counts = player_columns.values.flatten().tolist()
|
@@ -571,9 +571,9 @@ with tab3:
|
|
571 |
with tab2:
|
572 |
if 'working_seed' in st.session_state:
|
573 |
if site_var == 'Draftkings':
|
574 |
-
player_columns = st.session_state.working_seed[:, :
|
575 |
elif site_var == 'Fanduel':
|
576 |
-
player_columns = st.session_state.working_seed[:, :
|
577 |
|
578 |
# Flatten the DataFrame and count unique values
|
579 |
value_counts = player_columns.flatten().tolist()
|
|
|
478 |
summary_df = pd.DataFrame({
|
479 |
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
480 |
'Salary': [
|
481 |
+
np.min(st.session_state.working_seed[:,9]),
|
482 |
+
np.mean(st.session_state.working_seed[:,9]),
|
483 |
+
np.max(st.session_state.working_seed[:,9]),
|
484 |
+
np.std(st.session_state.working_seed[:,9])
|
485 |
],
|
486 |
'Proj': [
|
487 |
+
np.min(st.session_state.working_seed[:,10]),
|
488 |
+
np.mean(st.session_state.working_seed[:,10]),
|
489 |
+
np.max(st.session_state.working_seed[:,10]),
|
490 |
+
np.std(st.session_state.working_seed[:,10])
|
491 |
],
|
492 |
'Own': [
|
493 |
+
np.min(st.session_state.working_seed[:,15]),
|
494 |
+
np.mean(st.session_state.working_seed[:,15]),
|
495 |
+
np.max(st.session_state.working_seed[:,15]),
|
496 |
+
np.std(st.session_state.working_seed[:,15])
|
497 |
]
|
498 |
})
|
499 |
elif site_var == 'Fanduel':
|
500 |
summary_df = pd.DataFrame({
|
501 |
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
502 |
'Salary': [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
503 |
np.min(st.session_state.working_seed[:,8]),
|
504 |
np.mean(st.session_state.working_seed[:,8]),
|
505 |
np.max(st.session_state.working_seed[:,8]),
|
506 |
np.std(st.session_state.working_seed[:,8])
|
507 |
+
],
|
508 |
+
'Proj': [
|
509 |
+
np.min(st.session_state.working_seed[:,9]),
|
510 |
+
np.mean(st.session_state.working_seed[:,9]),
|
511 |
+
np.max(st.session_state.working_seed[:,9]),
|
512 |
+
np.std(st.session_state.working_seed[:,9])
|
513 |
+
],
|
514 |
+
'Own': [
|
515 |
+
np.min(st.session_state.working_seed[:,14]),
|
516 |
+
np.mean(st.session_state.working_seed[:,14]),
|
517 |
+
np.max(st.session_state.working_seed[:,14]),
|
518 |
+
np.std(st.session_state.working_seed[:,14])
|
519 |
]
|
520 |
})
|
521 |
|
|
|
535 |
with tab1:
|
536 |
if 'data_export_display' in st.session_state:
|
537 |
if site_var == 'Draftkings':
|
538 |
+
player_columns = st.session_state.data_export_display.iloc[:, :10]
|
539 |
elif site_var == 'Fanduel':
|
540 |
+
player_columns = st.session_state.data_export_display.iloc[:, :9]
|
541 |
|
542 |
# Flatten the DataFrame and count unique values
|
543 |
value_counts = player_columns.values.flatten().tolist()
|
|
|
571 |
with tab2:
|
572 |
if 'working_seed' in st.session_state:
|
573 |
if site_var == 'Draftkings':
|
574 |
+
player_columns = st.session_state.working_seed[:, :10]
|
575 |
elif site_var == 'Fanduel':
|
576 |
+
player_columns = st.session_state.working_seed[:, :9]
|
577 |
|
578 |
# Flatten the DataFrame and count unique values
|
579 |
value_counts = player_columns.flatten().tolist()
|