MLB_Research_Sheets / src /streamlit_app.py
James McCool
Implement error handling for column dropping in data retrieval for Streamlit app
f738bbd
import streamlit as st
import numpy as np
import pandas as pd
import pymongo
import os
import time
st.set_page_config(layout="wide")
@st.cache_resource
def init_conn():
uri = os.getenv('mongo_uri')
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["MLB_Database"]
return db
db = init_conn()
st.markdown("""
<style>
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
padding: 4px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #DAA520;
color: white;
border-radius: 10px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stTabs [aria-selected="true"] {
background-color: #DAA520;
border: 3px solid #FFD700;
color: white;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #FFD700;
cursor: pointer;
}
div[data-baseweb="select"] > div {
background-color: #DAA520;
color: white;
}
div{
box-sizing: content-box !important;
}
</style>""", unsafe_allow_html=True)
def paginate_dataframe(df, page_size):
total_rows = len(df)
total_pages = (total_rows + page_size -1) // page_size
if 'current_page' not in st.session_state:
st.session_state['current_page'] = 0
start_idx = st.session_state['current_page'] * page_size
end_idx = start_idx + page_size
current_page_data = df.iloc[start_idx:end_idx]
return current_page_data, total_pages, total_rows
def display_paginated_table(df, page_size):
current_page_data, total_pages, total_rows = paginate_dataframe(df, page_size)
st.dataframe(current_page_data.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r').format(precision=2), height = 500, use_container_width = True, hide_index = True)
col1, col2, col3, col4 = st.columns([1, 2, 2, 1])
with col1:
if st.button('⏮️ First', disabled=st.session_state.current_page == 0):
st.session_state.current_page = 0
st.rerun()
with col2:
if st.button('⬅️ Previous', disabled=st.session_state.current_page == 0):
st.session_state.current_page -= 1
st.rerun()
with col3:
if st.button('Next ➡️', disabled=st.session_state.current_page >= total_pages - 1):
st.session_state.current_page += 1
st.rerun()
with col4:
if st.button('Last ⏭️', disabled=st.session_state.current_page >= total_pages - 1):
st.session_state.current_page = total_pages - 1
st.rerun()
@st.cache_resource(ttl = 61)
def init_baselines():
db_pulls = ['Bullpen_Data', 'Hitter_Agg_Merge', 'Hitter_Long_Merge', 'Hitter_Short_Merge', 'Pitcher_Agg_Merge', 'Pitcher_Long_Merge', 'Pitcher_Short_Merge',
'Slate_Hitters_Merge', 'Slate_Teams_Merge', 'Starting_Pitchers', 'True_AVG_Split', 'Pitcher_Info', 'Hitter_Info']
for table in db_pulls:
collection = db[table]
cursor = collection.find()
df = pd.DataFrame(cursor)
if table == 'Bullpen_Data':
try:
bp_data = df.drop(columns = ['_id'])
except:
bp_data = df
elif table == 'Hitter_Agg_Merge':
try:
hitter_agg = df.drop(columns = ['_id'])
except:
hitter_agg = df
elif table == 'Hitter_Long_Merge':
try:
hitter_long = df.drop(columns = ['_id'])
except:
hitter_long = df
elif table == 'Hitter_Short_Merge':
try:
hitter_short = df.drop(columns = ['_id'])
except:
hitter_short = df
elif table == 'Pitcher_Agg_Merge':
try:
pitcher_agg = df.drop(columns = ['_id'])
except:
pitcher_agg = df
elif table == 'Pitcher_Long_Merge':
try:
pitcher_long = df.drop(columns = ['_id'])
except:
pitcher_long = df
elif table == 'Pitcher_Short_Merge':
try:
pitcher_short = df.drop(columns = ['_id'])
except:
pitcher_short = df
elif table == 'Slate_Hitters_Merge':
try:
slate_hitters = df.drop(columns = ['_id'])
except:
slate_hitters = df
elif table == 'Slate_Teams_Merge':
try:
slate_team = df.drop(columns = ['_id'])
except:
slate_team = df
elif table == 'Starting_Pitchers':
try:
starting_pitchers = df.drop(columns = ['_id'])
except:
starting_pitchers = df
elif table == 'True_AVG_Split':
try:
true_avg_split = df.drop(columns = ['_id'])
except:
true_avg_split = df
elif table == 'Pitcher_Info':
try:
pitcher_info = df.drop(columns = ['_id'])
except:
pitcher_info = df
elif table == 'Hitter_Info':
try:
hitter_info = df.drop(columns = ['_id'])
except:
hitter_info = df
return bp_data, hitter_agg, hitter_long, hitter_short, pitcher_agg, pitcher_long, pitcher_short, slate_hitters, slate_team, starting_pitchers, true_avg_split, pitcher_info, hitter_info
bp_data, hitter_agg, hitter_long, hitter_short, pitcher_agg, pitcher_long, pitcher_short, slate_hitters, slate_team, starting_pitchers, true_avg_split, pitcher_info, hitter_info = init_baselines()
pitcher_tab, hitter_tab, team_tab = st.tabs(['Pitchers', 'Hitters', 'Team'])
with pitcher_tab:
with st.container(border = True):
st.info('Note: Splits options are available for all baseline tables, they do not apply to True AVG, HWSr, or the Overview tables')
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
site_var_sp = st.selectbox('Site', ['DraftKings', 'FanDuel'], key = 'site_var_sp')
with col2:
table_var_sp = st.selectbox('Table', ['True AVG Splits', 'HWSr Splits', 'Current Slate Overview', 'Active Baselines', 'League Aggregate Baselines', 'League Short Term Baselines', 'League Long Term Baselines'], key = 'table_var_sp')
with col3:
splits_var_sp = st.selectbox('Splits', ['RHH', 'LHH', 'Overall'], key = 'splits_var_sp')
with col4:
team_type_sp = st.selectbox('Do you want to view all teams or Specific ones?', ['All', 'Specific'], key = 'team_type_sp')
with col5:
if team_type_sp == 'Specific':
team_var_sp = st.multiselect('Select Teams', starting_pitchers['Team'].unique(), key = 'team_var_sp')
else:
team_var_sp = None
st.write('All teams selected')
if table_var_sp == 'True AVG Splits':
disp_raw = true_avg_split
if team_var_sp is not None:
disp_raw = disp_raw[disp_raw['Team'].isin(team_var_sp)]
disp_raw = disp_raw[['Player', 'Handedness', 'Team', 'Opp', 'Opp LHH', 'Opp RHH', 'True AVG (LHH)', 'True AVG (RHH)', 'True AVG (Overall)', 'Weighted True AVG']]
elif table_var_sp == 'HWSr Splits':
disp_raw = true_avg_split
if team_var_sp is not None:
disp_raw = disp_raw[disp_raw['Team'].isin(team_var_sp)]
disp_raw = disp_raw[['Player', 'Handedness', 'Team', 'Opp', 'Opp LHH', 'Opp RHH', 'HWSr (LHH)', 'HWSr (RHH)', 'HWSr (Overall)', 'Weighted HWSr']]
elif table_var_sp == 'Current Slate Overview':
disp_raw = starting_pitchers
disp_raw = disp_raw.drop(columns = ['Own Adj', 'Perf_Adj'])
if team_var_sp is not None:
disp_raw = disp_raw[disp_raw['Team'].isin(team_var_sp)]
elif table_var_sp == 'Active Baselines':
disp_raw = pitcher_info
if splits_var_sp != 'Overall':
disp_raw = disp_raw[disp_raw['Set'] == splits_var_sp]
else:
disp_raw = disp_raw[disp_raw['Set'] == 'RHH']
if team_var_sp is not None:
disp_raw = disp_raw[disp_raw['Team'].isin(team_var_sp)]
disp_raw = disp_raw[['Names', 'DK_Salary', 'FD_Salary', 'Team', 'Opp', 'Opp_TT', 'Hand', 'K%', 'BB%', 'True AVG', 'xSLG', 'xBA', 'Hits', 'xHRs', 'xHR/PA']]
positive_set = ['K%']
elif table_var_sp == 'League Aggregate Baselines':
disp_raw = pitcher_agg
disp_raw = disp_raw[disp_raw['Set'] == splits_var_sp]
disp_raw = disp_raw[['Player', 'PA', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'Strikeoutper', 'Strikeouts', 'Walkper', 'Walks', 'xBA', 'xSLG', 'xwOBA', 'BABIP', 'AVG', 'FB%', 'True_AVG', 'xHits', 'xHRs', 'xHR/PA', 'HWSr']]
elif table_var_sp == 'League Short Term Baselines':
disp_raw = pitcher_short
disp_raw = disp_raw[disp_raw['Set'] == splits_var_sp]
disp_raw = disp_raw[['Player', 'PA', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'Strikeoutper', 'Strikeouts', 'Walkper', 'Walks', 'xBA', 'xSLG', 'xwOBA', 'BABIP', 'AVG', 'FB%', 'True_AVG', 'xHits', 'xHRs', 'xHR/PA', 'HWSr']]
elif table_var_sp == 'League Long Term Baselines':
disp_raw = pitcher_long
disp_raw = disp_raw[disp_raw['Set'] == splits_var_sp]
disp_raw = disp_raw[['Player', 'PA', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'Strikeoutper', 'Strikeouts', 'Walkper', 'Walks', 'xBA', 'xSLG', 'xwOBA', 'BABIP', 'AVG', 'FB%', 'True_AVG', 'xHits', 'xHRs', 'xHR/PA', 'HWSr']]
st.session_state['sp_disp_frame'] = disp_raw
page_var = len(st.session_state['sp_disp_frame']) / 2
sp_disp_container = st.container(border = True)
sp_disp_container = sp_disp_container.empty()
if table_var_sp in (['League Aggregate Baselines', 'League Short Term Baselines', 'League Long Term Baselines']):
with st.spinner("Full league baselines can take some time to load"):
time.sleep(5)
display_paginated_table(st.session_state['sp_disp_frame'], 50)
else:
with sp_disp_container:
st.dataframe(st.session_state['sp_disp_frame'].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r').format(precision=2), height = 500, use_container_width = True, hide_index = True)
with hitter_tab:
with st.container(border = True):
st.info('Note: Splits options are available for all baseline tables')
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
site_var_hitter = st.selectbox('Site', ['Draftkings', 'Fanduel'], key = 'site_var_hitter')
with col2:
table_var_hitter = st.selectbox('Table', ['Current Slate Overview', 'Active Baselines', 'League Aggregate Baselines', 'League Short Term Baselines', 'League Long Term Baselines'], key = 'table_var_hitter')
with col3:
splits_var_hitter = st.selectbox('Splits', ['Overall', 'RHP', 'LHP'], key = 'splits_var_hitter')
with col4:
position_type_hitter = st.selectbox('Do you want to view all Positions or Specific ones?', ['All', 'Specific'], key = 'position_type_hitter')
if position_type_hitter == 'Specific':
position_var_hitter = st.multiselect('Positions', ['C', '1B', '2B', '3B', 'SS', 'OF'], key = 'position_var_hitter')
else:
position_var_hitter = None
st.write('All Positions selected')
with col5:
team_type_hitter = st.selectbox('Do you want to view all Teams or Specific ones?', ['All', 'Specific'], key = 'team_type_hitter')
if team_type_hitter == 'Specific':
team_var_hitter = st.multiselect('Select Teams', slate_hitters['Team'].unique(), key = 'team_var_hitter')
else:
team_var_hitter = None
st.write('All Teams selected')
if table_var_hitter == 'Current Slate Overview':
disp_raw = slate_hitters
if team_var_hitter is not None:
disp_raw = disp_raw[disp_raw['Team'].isin(team_var_hitter)]
if position_var_hitter:
position_mask = disp_raw['Position'].apply(lambda x: any(pos in x for pos in position_var_hitter))
disp_raw = disp_raw[position_mask]
disp_raw = disp_raw[disp_raw['Set'] == site_var_hitter]
elif table_var_hitter == 'Active Baselines':
disp_raw = hitter_info
if team_var_hitter is not None:
disp_raw = disp_raw[disp_raw['Team'].isin(team_var_hitter)]
if position_var_hitter:
position_mask = disp_raw['Position'].apply(lambda x: any(pos in x for pos in position_var_hitter))
disp_raw = disp_raw[position_mask]
disp_raw = disp_raw.drop(columns = ['DK_SD_Salary', 'FD_SD_Salary', 'DK_Own', 'FD_Own', 'DK_player_ID', 'FD_player_ID', 'Opp_TT'])
elif table_var_hitter == 'League Aggregate Baselines':
disp_raw = hitter_agg
if team_var_hitter is not None:
disp_raw = disp_raw[disp_raw['Team'].isin(team_var_hitter)]
elif table_var_hitter == 'League Short Term Baselines':
disp_raw = hitter_short
if team_var_hitter is not None:
disp_raw = disp_raw[disp_raw['Team'].isin(team_var_hitter)]
elif table_var_hitter == 'League Long Term Baselines':
disp_raw = hitter_long
if team_var_hitter is not None:
disp_raw = disp_raw[disp_raw['Team'].isin(team_var_hitter)]
st.session_state['hitter_disp_frame'] = disp_raw
hitter_disp_container = st.container(border = True)
hitter_disp_container = hitter_disp_container.empty()
with hitter_disp_container:
if table_var_hitter in (['League Aggregate Baselines', 'League Short Term Baselines', 'League Long Term Baselines']):
with st.spinner("Full league baselines can take some time to load"):
time.sleep(7)
display_paginated_table(st.session_state['hitter_disp_frame'], 50)
else:
st.dataframe(st.session_state['hitter_disp_frame'].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height = 750, use_container_width = True, hide_index = True)
with team_tab:
with st.container(border = True):
col1, col2, col3 = st.columns(3)
with col1:
site_var_team= st.selectbox('Site', ['DraftKings', 'FanDuel'], key = 'site_var_team')
with col2:
table_var_team = st.selectbox('Table', ['Team Baselines', 'Bullpen Baselines'], key = 'table_var_team')
if table_var_team == 'Team Baselines':
st.session_state['team_disp_frame'] = slate_team
elif table_var_team == 'Bullpen Baselines':
st.session_state['team_disp_frame'] = bp_data
team_disp_container = st.container(border = True)
team_disp_container = team_disp_container.empty()
with team_disp_container:
st.dataframe(st.session_state['team_disp_frame'].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height = 750, use_container_width = True, hide_index = True)