File size: 10,675 Bytes
5ebc6ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecb89c6
 
c8f5b0b
 
 
 
 
5ebc6ac
 
85337cf
5ebc6ac
85337cf
5ebc6ac
 
 
 
 
a586f3f
 
5ebc6ac
05821ad
eb51cd9
ce671ad
5ebc6ac
85337cf
5ebc6ac
639de20
 
 
5ebc6ac
88b1bd2
 
 
5ebc6ac
85337cf
ecb89c6
 
 
5ebc6ac
ecb89c6
5ebc6ac
 
 
 
ecb89c6
5ebc6ac
85337cf
5ebc6ac
 
ecb89c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ebc6ac
 
ecb89c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]

import numpy as np
import pandas as pd
import streamlit as st
import gspread
import plotly.express as px
import random
import gc

@st.cache_resource
def init_conn():
        scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']

        credentials = {
          "type": "service_account",
          "project_id": "dfsnew",
          "private_key_id": "2432f6c3771f70a410c5c878d1359869fc9dddc8",
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQDBNBDU2aJuEr6n\ne0o7pDY8gjg1+g1e3oHlpyY/CHMByZuEwfXewsZYP/TApfr8zxXDNG9X31CloWXH\n6ef8H0h6TjhRppE/2YCUZlbgtvpwlDg+1aKTKY5Lc/L937I6V512mgMDhDmTwX+p\noV0vhPuJnyFy+Fuo+xu8D9A46lhTTIK4EZhHc04SUBxUI3pDdfvuMbjciD/Pskn2\nMwBSEG/FQoe4GYrSmm7jzYdSHItVBakr26xl117m8BrIuceU7IEWrnJGDza8TtTZ\n+4Wp7PY9v6DgVt2+rnnDaF/g7kocLqoj2xWp1eS7OALwmqaIPFljIUkL5AJJiLC1\n+/ve6iwVAgMBAAECggEADTFsPdCvwBL9HGw1nT2BK6AbzQnKfHI2zhMcMD04N0TI\nXygsjT3hM/kIElizOyy7+HS97rLz65+KFvzwx71uIlXxkBfO/txwJJIZeCZeky33\n6kiF3cU+b4YXL4FlRwkhGk55irWuhdm2iUOY3KwYziTE8LgncDJXij/NMPnFtshZ\n/2Dc/7sKLi1tna5tfXr5v4N7LhyFOfHme8ZSZIhnpV+WnFM/VAVghwi+3vfzeV+a\nVgvv+QwRUBF+MYpoW8aDw3Y1jKuKKxcG0qHR1mQQTDK6eAymy28lJ9LfgKkZBLS3\nVEGH8O+gLQj2l8VR8koRxA1FETJ9BnIiV4OF+uLQQQKBgQDyYkeBnpPKnw3MXKgy\nxtpt7hLdrrQiR69PHEvHj9z6b60KTH9jDMKcbCU/ouwbTtLQnvtwta2RoWD/1xk+\n3uaeQv/jOtgKGE+Sa0FvJuDWZwBfUORnyqb+s5G9MpVlqNLLkUmE5myyrDbFdxei\nwzisIjvQxtJDLB3pucTRyd6a1QKBgQDMDoWUfNpQI/up3r0RWVCl3odpwOMnpN0S\nhf8uLyvEvtbcMnpxCQCl+4KWnOiX4GH4N9sZGF8YTPazO2Kd85/GioUoNo5u6vJo\ncxD0BTvg5meyUjfZsmuU620/eVQBa88TRdo3isLmBqUp7SAC+g4vTHpgxn00dRYv\neSfZN0dsQQKBgQDkxR34mVOkyrqbSFj4k/dWCn6D/YDHWiF86ZgcowxO01jff5Q8\nSK7mNKxzg7KVk7Amd+eaWd+YtFh5IOwTCw9gEJy0O7Xs0UVJTTJVVryfoFgZnp/1\n1rAHdjT3/eZELTPILzjU1yeA/Eo11lHYramvzh/mzcFm5RzWnR/HYmFYgQKBgFOy\nbSX/pAgVCkedvc0c5lBymvZMkJ+VJrxPS+Ckpn43jKea6M/uUl7Cb8jZKSoKdgS6\n3FpJvc+Y2eOgKw4AfHuSG5Xn8roaEj23XK/KacoQl130DUZ0wV2+xvuvBz7h+ni8\nQQphFxoEhcBRq7ys1h6ebt+86mQW1ne4aRjWbKxBAoGARA+rBNIC9Z1vyRzMAXfj\nnQ9/wShd/NGpVRNrm7sdUastfoyK8Ip3HkJac3xE1ARpQTvxAz742mdeDxPWI8wZ\nHDsjIrRqGLKMN7tSIoM720y6PY/Tsg89SdY4y0h6M75rrEi4Lv5b7s4EmqAZdfKT\nbEyuT7sCPCLeOX/RLy/lCpA=\n-----END PRIVATE KEY-----\n",
          "client_email": "[email protected]",
          "client_id": "105107448378741046480",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/dfsapps%40dfsnew.iam.gserviceaccount.com",
          "universe_domain": "googleapis.com"
        }

        header= {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) ' 
              'AppleWebKit/537.11 (KHTML, like Gecko) '
              'Chrome/23.0.1271.64 Safari/537.11',
              'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
              'Accept-Charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3',
              'Accept-Encoding': 'none',
              'Accept-Language': 'en-US,en;q=0.8',
              'Connection': 'keep-alive'}

        gc_con = gspread.service_account_from_dict(credentials, scope)
      
        return gc_con

gcservice_account = init_conn()

NBAGetGameData = 'https://docs.google.com/spreadsheets/d/1tRQrF_I5rS7Q0g9vE8NrENDZ2P3_DvtbBZzKEakwOI0/edit#gid=1373653837'
NBABettingModel = 'https://docs.google.com/spreadsheets/d/1WBnvOHQi_zVTGF63efejK5ho02AY00HiYrMHnMJXY1E/edit#gid=1157978351'

game_format = {'Win %', 'Injury and Rotation Adjusted Win %'}

percentages_format = {'Playoff Odds': '{:.2%}', 'Division Odds': '{:.2%}', 'Top 4 Seed Odds': '{:.2%}', '1 Seed Odds': '{:.2%}', 'Win 1st Round': '{:.2%}',
                      'Win 2nd Round': '{:.2%}', 'Win Conference': '{:.2%}', 'Win Title': '{:.2%}', '1': '{:.2%}', '2': '{:.2%}', '3': '{:.2%}',
                      '4': '{:.2%}', '5': '{:.2%}', '6': '{:.2%}', '7': '{:.2%}', '8': '{:.2%}', '9': '{:.2%}', '10': '{:.2%}', '11': '{:.2%}',
                      '12': '{:.2%}', '13': '{:.2%}', '14': '{:.2%}', '15': '{:.2%}'}

@st.cache_resource(ttl = 300)
def init_baselines():
    sh = gcservice_account.open_by_url(NBABettingModel)

    worksheet = sh.worksheet('ExportTable')
    raw_display = pd.DataFrame(worksheet.get_values())
    raw_display.columns = raw_display.iloc[0]
    raw_display = raw_display[1:]
    raw_display = raw_display.reset_index(drop=True)
    raw_display.replace('', np.nan, inplace=True)
    cols_to_check = ['Win %', 'Injury and Rotation Adjusted Win %']
    raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
    raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
    raw_display = raw_display.drop(columns=['Day of Season', 'Team', 'Opp', 'Date Num', 'DR Team', 'In Minutes File'])
    game_model = raw_display[raw_display['Injury and Rotation Adjusted Win %'] != ""]
    game_model['Team Date'] = game_model['Team'] + " " + game_model['Date']

    worksheet = sh.worksheet('SeasonExport')
    raw_display = pd.DataFrame(worksheet.get_values())
    raw_display.columns = raw_display.iloc[0]
    raw_display = raw_display[1:]
    raw_display = raw_display.reset_index(drop=True)
    raw_display.replace('', 0, inplace=True)
    cols_to_check = ['Playoff Odds', 'Division Odds', 'Top 4 Seed Odds', '1 Seed Odds', 'Win 1st Round', 'Win 2nd Round', 'Win Conference', 'Win Title',
                     '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15']
    raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
    raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
    season_model = raw_display[raw_display['Team'] != ""]
    title_sims = season_model[['Team', 'Conference', 'Division', 'Power Rank', 'Team PointMarginPerGame', 'SeasonSimLookup', 'Win Projection Now',
                               'Playoff Odds', 'Division Odds', 'Top 4 Seed Odds', '1 Seed Odds', 'Win 1st Round', 'Win 2nd Round', 'Win Conference', 'Win Title']]
    seed_probs = season_model[['Team', 'Conference', 'Division', 'Avg Seed', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15']]

    return game_model, season_model, seed_probs, title_sims

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

game_model, season_model, seed_probs, title_sims = init_baselines()

tab1, tab2 = st.tabs(["Game Betting Model", "Season and Futures"])

with tab1:
    col1, col2 = st.columns([1, 9])
    with col1:
        if st.button("Reset Data", key='reset1'):
                  st.cache_data.clear()
                  game_model, season_model, seed_probs, title_sims = init_baselines()
        split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
        if split_var1 == 'Specific Teams':
            team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = game_model['Team'].unique(), key='team_var1')
        elif split_var1 == 'All':
            team_var1 = game_model.Team.values.tolist()
        date_split_var1 = st.radio("Would you like to view all Dates or specific ones?", ('All', 'Specific Dates'), key='date_split_var1')
        if date_split_var1 == 'Specific Teams':
            date_var1 = st.multiselect('Which Dates would you like to include in the tables?', options = game_model['Date'].unique(), key='date_var1')
        elif date_split_var1 == 'All':
            date_var1 = game_model.Date.values.tolist()
    with col2:
        game_display = game_model[game_model['Team'].isin(team_var1)]
        game_display = game_display[game_display['Date'].isin(date_var1)]
        game_display = game_display.set_index('Team Date')
        st.dataframe(game_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
        st.download_button(
            label="Export Game Model",
            data=convert_df_to_csv(game_model),
            file_name='AmericanNumbers_Game_Model_export.csv',
            mime='text/csv',
        )

with tab2:
    col1, col2 = st.columns([1, 9])
    with col1:
        if st.button("Reset Data", key='reset2'):
                  st.cache_data.clear()
                  game_model, season_model, seed_probs, title_sims = init_baselines()
        view_var2 = st.radio("Would you like to view title odds and win projections or seeding probabilities?", ('Win Odds', 'Seed Probabilities'), key='view_var2')
        split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
        if split_var2 == 'Specific Teams':
            team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = season_model['Team'].unique(), key='team_var2')
        elif split_var2 == 'All':
            team_var2 = season_model.Team.values.tolist()
    with col2:
        if view_var2 == 'Win Odds':
            title_sims = title_sims[title_sims['Team'].isin(team_var2)]
            season_display = title_sims.set_index('Team')
            season_display = season_display.sort_values(by=['Win Projection Now'], ascending=False)
            st.dataframe(season_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
            st.download_button(
                label="Export Futures Model",
                data=convert_df_to_csv(title_sims),
                file_name='AmericanNumbers_Season_Futures.csv',
                mime='text/csv',
            )
        elif view_var2 == 'Seed Probabilities':
            seed_probs = seed_probs[seed_probs['Team'].isin(team_var2)]
            season_display = seed_probs.set_index('Team')
            season_display = season_display.sort_values(by=['Win Projection Now'], ascending=False)
            st.dataframe(season_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
            st.download_button(
                label="Export Futures Model",
                data=convert_df_to_csv(seed_probs),
                file_name='AmericanNumbers_Season_Futures.csv',
                mime='text/csv',
            )