File size: 6,869 Bytes
5ebc6ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85337cf
5ebc6ac
85337cf
5ebc6ac
 
 
 
 
 
eb51cd9
ce671ad
5ebc6ac
85337cf
5ebc6ac
 
 
85337cf
5ebc6ac
85337cf
5ebc6ac
 
 
 
85337cf
5ebc6ac
85337cf
5ebc6ac
 
 
 
85337cf
5ebc6ac
 
85337cf
5ebc6ac
741f05b
85337cf
11f977f
85337cf
5ebc6ac
85337cf
 
 
5ebc6ac
 
 
 
 
 
85337cf
5ebc6ac
 
85337cf
5ebc6ac
85337cf
 
 
 
d77df94
5ebc6ac
85337cf
 
 
5ebc6ac
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]

import numpy as np
import pandas as pd
import streamlit as st
import gspread
import plotly.express as px
import random
import gc

@st.cache_resource
def init_conn():
        scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']

        credentials = {
          "type": "service_account",
          "project_id": "dfsnew",
          "private_key_id": "2432f6c3771f70a410c5c878d1359869fc9dddc8",
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQDBNBDU2aJuEr6n\ne0o7pDY8gjg1+g1e3oHlpyY/CHMByZuEwfXewsZYP/TApfr8zxXDNG9X31CloWXH\n6ef8H0h6TjhRppE/2YCUZlbgtvpwlDg+1aKTKY5Lc/L937I6V512mgMDhDmTwX+p\noV0vhPuJnyFy+Fuo+xu8D9A46lhTTIK4EZhHc04SUBxUI3pDdfvuMbjciD/Pskn2\nMwBSEG/FQoe4GYrSmm7jzYdSHItVBakr26xl117m8BrIuceU7IEWrnJGDza8TtTZ\n+4Wp7PY9v6DgVt2+rnnDaF/g7kocLqoj2xWp1eS7OALwmqaIPFljIUkL5AJJiLC1\n+/ve6iwVAgMBAAECggEADTFsPdCvwBL9HGw1nT2BK6AbzQnKfHI2zhMcMD04N0TI\nXygsjT3hM/kIElizOyy7+HS97rLz65+KFvzwx71uIlXxkBfO/txwJJIZeCZeky33\n6kiF3cU+b4YXL4FlRwkhGk55irWuhdm2iUOY3KwYziTE8LgncDJXij/NMPnFtshZ\n/2Dc/7sKLi1tna5tfXr5v4N7LhyFOfHme8ZSZIhnpV+WnFM/VAVghwi+3vfzeV+a\nVgvv+QwRUBF+MYpoW8aDw3Y1jKuKKxcG0qHR1mQQTDK6eAymy28lJ9LfgKkZBLS3\nVEGH8O+gLQj2l8VR8koRxA1FETJ9BnIiV4OF+uLQQQKBgQDyYkeBnpPKnw3MXKgy\nxtpt7hLdrrQiR69PHEvHj9z6b60KTH9jDMKcbCU/ouwbTtLQnvtwta2RoWD/1xk+\n3uaeQv/jOtgKGE+Sa0FvJuDWZwBfUORnyqb+s5G9MpVlqNLLkUmE5myyrDbFdxei\nwzisIjvQxtJDLB3pucTRyd6a1QKBgQDMDoWUfNpQI/up3r0RWVCl3odpwOMnpN0S\nhf8uLyvEvtbcMnpxCQCl+4KWnOiX4GH4N9sZGF8YTPazO2Kd85/GioUoNo5u6vJo\ncxD0BTvg5meyUjfZsmuU620/eVQBa88TRdo3isLmBqUp7SAC+g4vTHpgxn00dRYv\neSfZN0dsQQKBgQDkxR34mVOkyrqbSFj4k/dWCn6D/YDHWiF86ZgcowxO01jff5Q8\nSK7mNKxzg7KVk7Amd+eaWd+YtFh5IOwTCw9gEJy0O7Xs0UVJTTJVVryfoFgZnp/1\n1rAHdjT3/eZELTPILzjU1yeA/Eo11lHYramvzh/mzcFm5RzWnR/HYmFYgQKBgFOy\nbSX/pAgVCkedvc0c5lBymvZMkJ+VJrxPS+Ckpn43jKea6M/uUl7Cb8jZKSoKdgS6\n3FpJvc+Y2eOgKw4AfHuSG5Xn8roaEj23XK/KacoQl130DUZ0wV2+xvuvBz7h+ni8\nQQphFxoEhcBRq7ys1h6ebt+86mQW1ne4aRjWbKxBAoGARA+rBNIC9Z1vyRzMAXfj\nnQ9/wShd/NGpVRNrm7sdUastfoyK8Ip3HkJac3xE1ARpQTvxAz742mdeDxPWI8wZ\nHDsjIrRqGLKMN7tSIoM720y6PY/Tsg89SdY4y0h6M75rrEi4Lv5b7s4EmqAZdfKT\nbEyuT7sCPCLeOX/RLy/lCpA=\n-----END PRIVATE KEY-----\n",
          "client_email": "[email protected]",
          "client_id": "105107448378741046480",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/dfsapps%40dfsnew.iam.gserviceaccount.com",
          "universe_domain": "googleapis.com"
        }

        header= {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) ' 
              'AppleWebKit/537.11 (KHTML, like Gecko) '
              'Chrome/23.0.1271.64 Safari/537.11',
              'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
              'Accept-Charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3',
              'Accept-Encoding': 'none',
              'Accept-Language': 'en-US,en;q=0.8',
              'Connection': 'keep-alive'}

        gc_con = gspread.service_account_from_dict(credentials, scope)
      
        return gc_con

gcservice_account = init_conn()

NBAGetGameData = 'https://docs.google.com/spreadsheets/d/1tRQrF_I5rS7Q0g9vE8NrENDZ2P3_DvtbBZzKEakwOI0/edit#gid=1373653837'
NBABettingModel = 'https://docs.google.com/spreadsheets/d/1WBnvOHQi_zVTGF63efejK5ho02AY00HiYrMHnMJXY1E/edit#gid=1157978351'

@st.cache_resource(ttl = 300)
def init_baselines():
    sh = gcservice_account.open_by_url(NBABettingModel)

    worksheet = sh.worksheet('ExportTable')
    raw_display = pd.DataFrame(worksheet.get_values())
    raw_display.columns = raw_display.iloc[0]
    raw_display = raw_display[1:]
    raw_display = raw_display.reset_index(drop=True)
    raw_display.replace('', np.nan, inplace=True)
    raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
    game_model = raw_display[raw_display['Injury and Rotation Adjusted Win %'] != ""]
    game_model['Team Date'] = game_model['Team'] + " " + game_model['Date']

    worksheet = sh.worksheet('SeasonExport')
    raw_display = pd.DataFrame(worksheet.get_values())
    raw_display.replace('', 0, inplace=True)
    raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
    season_model = raw_display[raw_display['Team'] != ""]

    return game_model, season_model

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

game_model, season_model = init_baselines()

tab1, tab2 = st.tabs(["Game Betting Model", "Season and Futures"])

with tab1:
    if st.button("Reset Data", key='reset1'):
              st.cache_data.clear()
              game_model, season_model = init_baselines()
    split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
    if split_var1 == 'Specific Teams':
        team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = game_model['Team'].unique(), key='team_var1')
    elif split_var1 == 'All':
        team_var1 = game_model.Team.values.tolist()
    game_model = game_model[game_model['Team'].isin(team_var1)]
    game_display = game_model.set_index('Team Date')
    st.dataframe(game_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
    st.download_button(
        label="Export Game Model",
        data=convert_df_to_csv(game_model),
        file_name='AmericanNumbers_Game_Model_export.csv',
        mime='text/csv',
    )

with tab2:
    if st.button("Reset Data", key='reset2'):
              st.cache_data.clear()
              game_model, season_model = init_baselines()
    split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
    if split_var2 == 'Specific Teams':
        team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = season_model['Team'].unique(), key='team_var2')
    elif split_var2 == 'All':
        team_var2 = season_model.Team.values.tolist()
    season_model = season_model[season_model['Team'].isin(team_var2)]
    season_display = season_model.set_index('Team')
    season_display = season_display.sort_values(by=['Win Projection Now'], ascending=False)
    st.dataframe(season_display, use_container_width = True)
    st.download_button(
        label="Export Futures Model",
        data=convert_df_to_csv(season_model),
        file_name='AmericanNumbers_Season_Futures.csv',
        mime='text/csv',
    )