File size: 8,510 Bytes
5ebc6ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8f5b0b
 
 
 
 
5ebc6ac
 
85337cf
5ebc6ac
85337cf
5ebc6ac
 
 
 
 
 
eb51cd9
ce671ad
5ebc6ac
85337cf
5ebc6ac
639de20
 
 
5ebc6ac
88b1bd2
 
 
5ebc6ac
85337cf
5ebc6ac
85337cf
5ebc6ac
 
 
 
85337cf
5ebc6ac
85337cf
5ebc6ac
 
 
 
85337cf
5ebc6ac
 
85337cf
5ebc6ac
741f05b
fcb4a09
 
 
 
 
 
 
 
85337cf
5ebc6ac
85337cf
 
 
5ebc6ac
 
 
 
 
 
85337cf
5ebc6ac
 
85337cf
5ebc6ac
85337cf
df3f181
 
 
c8f5b0b
5ebc6ac
85337cf
 
 
5ebc6ac
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]

import numpy as np
import pandas as pd
import streamlit as st
import gspread
import plotly.express as px
import random
import gc

@st.cache_resource
def init_conn():
        scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']

        credentials = {
          "type": "service_account",
          "project_id": "dfsnew",
          "private_key_id": "2432f6c3771f70a410c5c878d1359869fc9dddc8",
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQDBNBDU2aJuEr6n\ne0o7pDY8gjg1+g1e3oHlpyY/CHMByZuEwfXewsZYP/TApfr8zxXDNG9X31CloWXH\n6ef8H0h6TjhRppE/2YCUZlbgtvpwlDg+1aKTKY5Lc/L937I6V512mgMDhDmTwX+p\noV0vhPuJnyFy+Fuo+xu8D9A46lhTTIK4EZhHc04SUBxUI3pDdfvuMbjciD/Pskn2\nMwBSEG/FQoe4GYrSmm7jzYdSHItVBakr26xl117m8BrIuceU7IEWrnJGDza8TtTZ\n+4Wp7PY9v6DgVt2+rnnDaF/g7kocLqoj2xWp1eS7OALwmqaIPFljIUkL5AJJiLC1\n+/ve6iwVAgMBAAECggEADTFsPdCvwBL9HGw1nT2BK6AbzQnKfHI2zhMcMD04N0TI\nXygsjT3hM/kIElizOyy7+HS97rLz65+KFvzwx71uIlXxkBfO/txwJJIZeCZeky33\n6kiF3cU+b4YXL4FlRwkhGk55irWuhdm2iUOY3KwYziTE8LgncDJXij/NMPnFtshZ\n/2Dc/7sKLi1tna5tfXr5v4N7LhyFOfHme8ZSZIhnpV+WnFM/VAVghwi+3vfzeV+a\nVgvv+QwRUBF+MYpoW8aDw3Y1jKuKKxcG0qHR1mQQTDK6eAymy28lJ9LfgKkZBLS3\nVEGH8O+gLQj2l8VR8koRxA1FETJ9BnIiV4OF+uLQQQKBgQDyYkeBnpPKnw3MXKgy\nxtpt7hLdrrQiR69PHEvHj9z6b60KTH9jDMKcbCU/ouwbTtLQnvtwta2RoWD/1xk+\n3uaeQv/jOtgKGE+Sa0FvJuDWZwBfUORnyqb+s5G9MpVlqNLLkUmE5myyrDbFdxei\nwzisIjvQxtJDLB3pucTRyd6a1QKBgQDMDoWUfNpQI/up3r0RWVCl3odpwOMnpN0S\nhf8uLyvEvtbcMnpxCQCl+4KWnOiX4GH4N9sZGF8YTPazO2Kd85/GioUoNo5u6vJo\ncxD0BTvg5meyUjfZsmuU620/eVQBa88TRdo3isLmBqUp7SAC+g4vTHpgxn00dRYv\neSfZN0dsQQKBgQDkxR34mVOkyrqbSFj4k/dWCn6D/YDHWiF86ZgcowxO01jff5Q8\nSK7mNKxzg7KVk7Amd+eaWd+YtFh5IOwTCw9gEJy0O7Xs0UVJTTJVVryfoFgZnp/1\n1rAHdjT3/eZELTPILzjU1yeA/Eo11lHYramvzh/mzcFm5RzWnR/HYmFYgQKBgFOy\nbSX/pAgVCkedvc0c5lBymvZMkJ+VJrxPS+Ckpn43jKea6M/uUl7Cb8jZKSoKdgS6\n3FpJvc+Y2eOgKw4AfHuSG5Xn8roaEj23XK/KacoQl130DUZ0wV2+xvuvBz7h+ni8\nQQphFxoEhcBRq7ys1h6ebt+86mQW1ne4aRjWbKxBAoGARA+rBNIC9Z1vyRzMAXfj\nnQ9/wShd/NGpVRNrm7sdUastfoyK8Ip3HkJac3xE1ARpQTvxAz742mdeDxPWI8wZ\nHDsjIrRqGLKMN7tSIoM720y6PY/Tsg89SdY4y0h6M75rrEi4Lv5b7s4EmqAZdfKT\nbEyuT7sCPCLeOX/RLy/lCpA=\n-----END PRIVATE KEY-----\n",
          "client_email": "[email protected]",
          "client_id": "105107448378741046480",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/dfsapps%40dfsnew.iam.gserviceaccount.com",
          "universe_domain": "googleapis.com"
        }

        header= {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) ' 
              'AppleWebKit/537.11 (KHTML, like Gecko) '
              'Chrome/23.0.1271.64 Safari/537.11',
              'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
              'Accept-Charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3',
              'Accept-Encoding': 'none',
              'Accept-Language': 'en-US,en;q=0.8',
              'Connection': 'keep-alive'}

        gc_con = gspread.service_account_from_dict(credentials, scope)
      
        return gc_con

gcservice_account = init_conn()

NBAGetGameData = 'https://docs.google.com/spreadsheets/d/1tRQrF_I5rS7Q0g9vE8NrENDZ2P3_DvtbBZzKEakwOI0/edit#gid=1373653837'
NBABettingModel = 'https://docs.google.com/spreadsheets/d/1WBnvOHQi_zVTGF63efejK5ho02AY00HiYrMHnMJXY1E/edit#gid=1157978351'

percentages_format = {'Playoff Odds': '{:.2%}', 'Division Odds': '{:.2%}', 'Top 4 Seed Odds': '{:.2%}', '1 Seed Odds': '{:.2%}', 'Win 1st Round': '{:.2%}',
                      'Win 2nd Round': '{:.2%}', 'Win Conference': '{:.2%}', 'Win Title': '{:.2%}', '1': '{:.2%}', '2': '{:.2%}', '3': '{:.2%}',
                      '4': '{:.2%}', '5': '{:.2%}', '6': '{:.2%}', '7': '{:.2%}', '8': '{:.2%}', '9': '{:.2%}', '10': '{:.2%}', '11': '{:.2%}',
                      '12': '{:.2%}', '13': '{:.2%}', '14': '{:.2%}', '15': '{:.2%}'}

@st.cache_resource(ttl = 300)
def init_baselines():
    sh = gcservice_account.open_by_url(NBABettingModel)

    worksheet = sh.worksheet('ExportTable')
    raw_display = pd.DataFrame(worksheet.get_values())
    raw_display.columns = raw_display.iloc[0]
    raw_display = raw_display[1:]
    raw_display = raw_display.reset_index(drop=True)
    raw_display.replace('', np.nan, inplace=True)
    raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
    game_model = raw_display[raw_display['Injury and Rotation Adjusted Win %'] != ""]
    game_model['Team Date'] = game_model['Team'] + " " + game_model['Date']

    worksheet = sh.worksheet('SeasonExport')
    raw_display = pd.DataFrame(worksheet.get_values())
    raw_display.columns = raw_display.iloc[0]
    raw_display = raw_display[1:]
    raw_display = raw_display.reset_index(drop=True)
    raw_display.replace('', 0, inplace=True)
    cols_to_check = ['Playoff Odds', 'Division Odds', 'Top 4 Seed Odds', '1 Seed Odds', 'Win 1st Round', 'Win 2nd Round', 'Win Conference', 'Win Title',
                     '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15']
    raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
    raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
    season_model = raw_display[raw_display['Team'] != ""]

    return game_model, season_model

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

game_model, season_model = init_baselines()

tab1, tab2 = st.tabs(["Game Betting Model", "Season and Futures"])

with tab1:
    if st.button("Reset Data", key='reset1'):
              st.cache_data.clear()
              game_model, season_model = init_baselines()
    split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
    if split_var1 == 'Specific Teams':
        team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = game_model['Team'].unique(), key='team_var1')
    elif split_var1 == 'All':
        team_var1 = game_model.Team.values.tolist()
    date_split_var1 = st.radio("Would you like to view all Dates or specific ones?", ('All', 'Specific Dates'), key='date_split_var1')
    if date_split_var1 == 'Specific Teams':
        date_var1 = st.multiselect('Which Dates would you like to include in the tables?', options = game_model['Date'].unique(), key='date_var1')
    elif date_split_var1 == 'All':
        date_var1 = game_model.Date.values.tolist()
    game_display = game_model[game_model['Team'].isin(team_var1)]
    game_display = game_display[game_display['Date'].isin(date_var1)]
    game_display = game_display.set_index('Team Date')
    st.dataframe(game_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
    st.download_button(
        label="Export Game Model",
        data=convert_df_to_csv(game_model),
        file_name='AmericanNumbers_Game_Model_export.csv',
        mime='text/csv',
    )

with tab2:
    if st.button("Reset Data", key='reset2'):
              st.cache_data.clear()
              game_model, season_model = init_baselines()
    split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
    if split_var2 == 'Specific Teams':
        team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = season_model['Team'].unique(), key='team_var2')
    elif split_var2 == 'All':
        team_var2 = season_model.Team.values.tolist()
    season_model = season_model[season_model['Team'].isin(team_var2)]
    season_display = season_model.set_index('Team')
    season_display = season_display.sort_values(by=['Win Projection Now'], ascending=False)
    st.dataframe(season_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
    st.download_button(
        label="Export Futures Model",
        data=convert_df_to_csv(season_model),
        file_name='AmericanNumbers_Season_Futures.csv',
        mime='text/csv',
    )